Knowledge Agora



Similar Articles

Title Characterization of PLA feedstock after multiple recycling processes for large-format material extrusion additive manufacturing
ID_Doc 24120
Authors Romani, A; Perusin, L; Ciurnelli, M; Levi, M
Title Characterization of PLA feedstock after multiple recycling processes for large-format material extrusion additive manufacturing
Year 2024
Published
Abstract Since the take-make-dispose model is leading to significant waste production and environmental impact, circular economy models have been spreading to reduce waste and resource depletion, rethinking the existing resource cycles. Plastic waste created environmental and economic concerns, requiring new recycling methods and strategies to preserve resources. This practice plays a key role in extrusion-based additive manufacturing, con -verting waste into recycled feedstock. Large-format additive manufacturing represents a promising way to scale up recycling strategies with granulated polymer feedstock, especially considering popular materials, i.e., PLA. However, thermomechanical degradation affects the quality of this secondary raw material, and these effects on large-format systems are scarcely studied. This work investigates the thermal, rheological, and mechanical properties of PLA feedstock for large-format additive manufacturing after multiple recycling processes, i.e., up to six. The effect of material degradation from multiple recycling processes was assessed through Gel Permeation Chromatography, Differential Scanning Calorimetry, flow stress ramp tests, tensile tests, and colorimetry. Some 3D printed parts were fabricated to assess the overall quality of the process, including pieces from potential applications. Lower effects of thermomechanical degradation were found compared to desktop-size 3D printers, mainly by cutting the reprocessing steps to produce secondary raw materials, i.e., making new filaments. Recycled granulate PLA feedstocks represent a potential alternative to virgin pellets for new applications in real -world contexts.[copyright information to be updated in production process].
PDF https://doi.org/10.1016/j.mtsust.2023.100636

Similar Articles

ID Score Article
6454 Liu, HD; Gong, K; Portela, A; Chyzna, V; Yan, GM; Cao, Z; Dunbar, R; Chen, YY Investigation of distributed recycling of polylactic acid over multiple generations via the granule-based material extrusion process(2024)
26493 Dash, A; Kabra, S; Misra, S; Hrishikeshan, G; Singh, RP; Patterson, AE; Chadha, U; Rajan, AJ; Hirpha, BB Comparative property analysis of fused filament fabrication PLA using fresh and recycled feedstocks(2022)Materials Research Express, 9, 11
13228 Agbakoba, VC; Webb, N; Jegede, E; Phillips, R; Hlangothi, SP; John, MJ Mechanical Recycling of Waste PLA Generated From 3D Printing Activities: Filament Production and Thermomechanical Analysis(2024)Macromolecular Materials And Engineering, 309, 8
28570 Simon, Z; Stojcevski, F; Dharmasiri, B; Henderson, LC; Amini, N Circular economy-driven additive manufacturing: A model for recycling PLA/copper composites through multi-extrusion processing(2024)
14680 Jayawardane, H; Davies, IJ; Gamage, JR; John, M; Biswas, WK Additive manufacturing of recycled plastics: a 'techno-eco-efficiency' assessment(2023)International Journal Of Advanced Manufacturing Technology, 126, 3-4
10218 Paramatti, M; Romani, A; Pugliese, G; Levi, M PLA Feedstock Filled with Spent Coffee Grounds for New Product Applications with Large-Format Material Extrusion Additive Manufacturing(2024)Acs Omega, 9, 6
22353 Hasan, MR; Davies, IJ; Paramanik, A; John, M; Biswas, WK Fabrication and Characterisation of Sustainable 3D-Printed Parts Using Post-Consumer PLA Plastic and Virgin PLA Blends(2024)Processes, 12.0, 4
18506 Nagengast, N; Bay, C; Döpper, F; Schmidt, HW; Neuber, C Thermo-Mechanical Recyclability of Additively Manufactured Polypropylene and Polylactic Acid Parts and Polypropylene Support Structures(2023)Polymers, 15.0, 10
25618 Zhu, Y; Fink, W; Yost, SF; Mather, PT; Vogt, BD Subtle differences in recycled polypropylene from rheology to additives impacts ease of circularity in materials extrusion additive manufacture(2024)
14079 Alexandre, A; Sanchez, FCA; Boudaoud, H; Camargo, M; Pearce, JM Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers(2020)3D Printing And Additive Manufacturing, 7, 5
Scroll