Knowledge Agora



Similar Articles

Title Spent Lithium-Ion Battery Recycling Using Flotation Technology: Effect of Material Heterogeneity on Separation Performance
ID_Doc 24313
Authors Verdugo, L; Zhang, L; Etschmann, B; Brugger, J; Bruckard, W; Menacho, J; Molina, L; Hoadley, A
Title Spent Lithium-Ion Battery Recycling Using Flotation Technology: Effect of Material Heterogeneity on Separation Performance
Year 2024
Published Processes, 12, 7
Abstract In this study, two types of recycling scenarios are assessed for spent battery materials using froth flotation. The first is for a single cathode chemistry and would be considered as the most likely scenario for a large battery manufacturer, who takes back their own batteries for reprocessing. The second scenario is for mixed cathode chemistry, and this would be the most likely scenario for regional reprocessing. The mixed spent battery materials assessed in this work were sourced from such an industrial recycling operation in Australia. Good results were obtained for both recycling scenarios. The anode recovery and anode grade in the final concentrate for both materials evaluated were for the single spent battery material 80.1% and 90.3%, respectively, and for the mixed spent battery material, 77.4% and 82.0%, respectively. For the final tailings, the cathode grades for both materials tested were 93.9% and 87.1%, respectively, with the lower grade for the mixed spent battery attributed to the high content of impurities in the original material. These results highlight the importance of the preprocessing ahead of the flotation process. The results confirm froth flotation as a feasible technique that can be used to achieve the bulk of the separation.
PDF https://www.mdpi.com/2227-9717/12/7/1363/pdf?version=1720688430

Similar Articles

ID Score Article
24521 Verdugo, L; Zhang, L; Etschmann, B; Bruckard, W; Menacho, J; Hoadley, A Effect of lithium ion on the separation of electrode materials in spent lithium ion batteries using froth flotation(2023)
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
21830 Sommerville, R; Shaw-Stewart, J; Goodship, V; Rowson, N; Kendrick, E A review of physical processes used in the safe recycling of lithium ion batteries(2020)
22778 Doose, S; Mayer, JK; Michalowski, P; Kwade, A Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations(2021)Metals, 11.0, 2
9511 Raj, B; Sahoo, MK; Nikoloski, A; Singh, P; Basu, S; Mohapatra, M Retrieving Spent Cathodes from Lithium-Ion Batteries through Flourishing Technologies(2023)Batteries & Supercaps, 6.0, 1
13521 Tembo, PM; Dyer, C; Subramanian, V Lithium-ion battery recycling-a review of the material supply and policy infrastructure(2024)Npg Asia Materials, 16, 1
28673 Neumann, J; Petranikova, M; Meeus, M; Gamarra, JD; Younesi, R; Winter, M; Nowak, S Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling(2022)Advanced Energy Materials, 12.0, 17
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
Scroll