Knowledge Agora



Similar Articles

Title Monomer recycling of polyethylene terephthalate, polycarbonate and polyethers: Scalable processes to achieve high carbon circularity
ID_Doc 24349
Authors Parida, D; Aerts, A; Vanbroekhoven, K; Van Dael, M; Mitta, H; Li, LF; Eevers, W; Van Geem, KM; Feghali, E; Elst, K
Title Monomer recycling of polyethylene terephthalate, polycarbonate and polyethers: Scalable processes to achieve high carbon circularity
Year 2024
Published
Abstract This review presents a comprehensive description of the current pathways used in the chemical recycling of oxygenated plastics, with a specific focus on poly(ethylene terephthalate) (PET), poly(bisphenol-A carbonate) (PC), and polyethers including anhydride-cured epoxies. For PC and PET, the emphasis is on processes that achieve high depolymerization efficiencies as well as monomer selectivity and the potential to simplify downstream processing for the recovery of pure monomers. In the case of epoxies, this work focuses on depolymerization processes that produce curable molecules, as studies on epoxy depolymerization are scarce. To assess scalability, different depolymerization pathways are compared for each polymer based on the process conditions and monomer yields. The review concludes with the discussion on potentials and challenges of the distinct depolymerization pathways that have been developed for oxygenated plastics, such as hydrolysis, alcoholysis, and reductive depolymerization. (c) 2023 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
8799 Clark, RA; Shaver, MP Depolymerization within a Circular Plastics System(2024)Chemical Reviews, 124.0, 5
12478 Anglou, E; Ganesan, A; Golabek, KM; Chang, YC; Fu, Q; Bradley, W; Jones, CW; Sievers, C; Nair, S; Boukouvala, F Process development and techno-economic analysis for mechanochemical recycling of poly(ethylene terephthalate)(2024)
28435 Highmoore, JF; Kariyawasam, LS; Trenor, SR; Yang, Y Design of depolymerizable polymers toward a circular economy(2024)Green Chemistry, 26.0, 5
26988 Iturrondobeitia, M; Alonso, L; Lizundia, E Prospective life cycle assessment of poly (ethylene terephthalate) upcycling via chemoselective depolymerization(2023)
17243 Kristensen, SK; Ahrens, A; Donslund, BS; Skrydstrup, T Perspective on the Development of Monomer Recovery Technologies from Plastics Designed to Last(2024)Acs Organic & Inorganic Au, 4, 4
19730 Li, XL; Ma, K; Xu, F; Xu, TQ Advances in the Synthesis of Chemically Recyclable Polymers(2023)Chemistry-An Asian Journal, 18.0, 3
23588 Payne, J; Jones, MD The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities(2021)Chemsuschem, 14, 19
19996 Shi, CX; Quinn, EC; Diment, WT; Chen, EYX Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy(2024)Chemical Reviews, 124.0, 7
11117 Shekhar, S; Hoque, ME; Bajpai, PK; Islam, H; Sharma, B Chemical upcycling of plastics as a solution to the plastic trash problem for an ideal, circular polymer economy and energy recovery(2024)Environment Development And Sustainability, 26, 3
14519 Ghosal, K; Nayak, C Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions - hope vs. hype(2022)Materials Advances, 3, 4
Scroll