Knowledge Agora



Similar Articles

Title Advanced Hybrid System for Ammonium Valorization as Liquid Fertilizer from Treated Urban Wastewaters: Validation of Natural Zeolites Pretreatment and Liquid-Liquid Membrane Contactors at Pilot Plant Scale
ID_Doc 24479
Authors Mayor, A; Reig, M; Vecino, X; Cortina, JL; Valderrama, C
Title Advanced Hybrid System for Ammonium Valorization as Liquid Fertilizer from Treated Urban Wastewaters: Validation of Natural Zeolites Pretreatment and Liquid-Liquid Membrane Contactors at Pilot Plant Scale
Year 2023
Published Membranes, 13, 6
Abstract This study evaluates a hybrid system combining zeolites as a sorption stage and a hollow fiber membrane contactor (HFMC) for ammonia (NH3) recovery from treated urban wastewater. Ion exchange with zeolites was selected as an advanced pretreatment and concentration step before the HFMC. The system was tested with wastewater treatment plant (WWTP) effluent (mainstream, 50 mg N-NH4/L) and anaerobic digestion centrates (sidestream, 600-800 mg N-NH4/L) from another WWTP. Natural zeolite, primarily clinoptilolite, demonstrated effective desorption of retained ammonium using a 2% NaOH solution in a closed-loop configuration, resulting in an ammonia-rich brine that enabled over 95% NH3 recovery using polypropylene HFMCs. A 1 m(3)/h demonstration plant processed both urban wastewaters, which were pretreated by ultrafiltration, removing over 90% of suspended solids and 60-65% of COD. The 2% NaOH regeneration brines (2.4-5.6 g N-NH4/L) were treated in a closed-loop HFMC pilot system, producing 10-15% N streams with potential use as liquid fertilizers. The resulting ammonium nitrate was free of heavy metals and organic micropollutants, making it suitable for use as liquid fertilizer. This comprehensive N management solution for urban wastewater applications can contribute to local economies while achieving reduced N discharge and circularity goals.
PDF https://www.mdpi.com/2077-0375/13/6/580/pdf?version=1685714838

Similar Articles

ID Score Article
6852 Sheikh, M; Lopez, J; Reig, M; Vecino, X; Rezakazemi, M; Valderrama, CA; Cortina, JL Ammonia recovery from municipal wastewater using hybrid NaOH closed-loop membrane contactor and ion exchange system(2023)
14347 Reig, M; Vecino, X; Gibert, O; Valderrama, C; Cortina, JL Study of the operational parameters in the hollow fibre liquid-liquid membrane contactors process for ammonia valorisation as liquid fertiliser(2021)
26187 Muscarella, SM; Laudicina, VA; Badalucco, L; Conte, P; Mannina, G Ammonium Recovery from Synthetic Wastewaters by Using Zeolitic Mixtures: A Desorption Batch-Study(2023)Water, 15, 19
21292 Pinelli, D; Foglia, A; Fatone, F; Papa, E; Maggetti, C; Bovina, S; Frascari, D Ammonium recovery from municipal wastewater by ion exchange: Development and application of a procedure for sorbent selection(2022)Journal Of Environmental Chemical Engineering, 10.0, 6
12913 Medri, V; Papa, E; Landi, E; Maggetti, C; Pinelli, D; Frascari, D Ammonium removal and recovery from municipal wastewater by ion exchange using a metakaolin K-based geopolymer(2022)
26593 Sayavedra, SM; Dockx, L; Sigurnjak, I; Akyol, C; Meers, E Post-treatment of high-rate activated sludge effluent via zeolite adsorption and recovery of ammonium-nitrogen as alternative fertilising products(2024)
21569 Muscarella, SM; Laudicina, VA; Di Trapani, D; Mannina, G Recovering ammonium from real treated wastewater by zeolite packed columns: The effect of flow rate and particle diameter(2024)
29889 Samarina, T; Guagneli, L; Takaluoma, E; Tuomikoski, S; Pesonen, J; Laatikainen, O Ammonium removal by metakaolin-based geopolymers from municipal and industrial wastewaters and its sequential recovery by stripping techniques(2022)
26516 Guida, S; Conzelmann, L; Remy, C; Vale, P; Jefferson, B; Soares, A Resilience and life cycle assessment of ion exchange process for ammonium removal from municipal wastewater(2021)
14064 Vecino, X; Reig, M; Gibert, O; Valderrama, C; Cortina, JL Integration of liquid-liquid membrane contactors and electrodialysis for ammonium recovery and concentration as a liquid fertilizer(2020)
Scroll