Knowledge Agora



Similar Articles

Title Sustainable utilization of nutmeg fruit rind waste for Cr(VI) removal and resource recovery from industrial wastewater: An integrated approach
ID_Doc 24618
Authors Vaishna, VR; Sam, J; Nair, RR; Akhina, MK; Haritha, K; Prathish, KP
Title Sustainable utilization of nutmeg fruit rind waste for Cr(VI) removal and resource recovery from industrial wastewater: An integrated approach
Year 2023
Published Journal Of Environmental Chemical Engineering, 11, 6
Abstract The present study demonstrates an innovative circular economic process to repurpose agricultural waste, nutmeg fruit rind into an effective adsorbent followed by its value addition/safe disposal, thereby seamlessly aligning with the principles of green chemistry and sustainable waste management. Low-cost bio-sorbents are one of the most promising substances for pollutant removal in water treatment research. Fruit shells and peels are annoying to the environment because they contribute to solid trash after consumption and add to the daunting challenge of municipal solid waste management. This study investigated the potential of nutmeg fruit rind waste, a readily available agricultural byproduct, for the removal of hexavalent chromium (Cr(VI)) from contaminated streams. The findings highlight the significant removal efficiency of Cr(VI) ions through adsorption onto the nutmeg fruit rind waste, underscoring its potential as an affordable and eco-friendly solution for wastewater treatment. The study showed that pH, adsorbent dosage, adsorbate concentration, contact time, and temperature significantly influence adsorption. The insights into the adsorption mechanism revealed that the electrostatic interaction, hydrogen bonding, ion exchange, and surface complexation primarily contributed to the removal of Cr(VI) ions. The kinetics studies matched well with the pseudo-second-order kinetic model, and the sorption fits the Sips isotherm, while thermodynamic studies confirmed the spontaneity and exothermic nature of the process. The quantitative removal of Cr(VI) and other co-existing heavy metals from real textile wastewater samples was demonstrated. Finally, the spent adsorbent was subjected to anaerobic digestion to recover biogas and Cr(VI), which offers a sustainable solution to mitigate the contamination risk associated with discarding the spent adsorbent while contributing to resource recovery.
PDF

Similar Articles

ID Score Article
14343 Ghanim, B; Leahy, JJ; O'Dwyer, TF; Kwapinski, W; Pembroke, JT; Murnane, JG Removal of hexavalent chromium (Cr(VI)) from aqueous solution using acid-modified poultry litter-derived hydrochar: adsorption, regeneration and reuse(2022)Journal Of Chemical Technology And Biotechnology, 97, 1
17269 Kabir, MM; Nahar, N; Akter, MM; Alam, F; Gilroyed, BH; Misu, MM; Didar-ul-Alam, M; Hakim, M; Tijing, L; Shon, HK Agro-waste-based functionalized and economic adsorbents for the effective treatment of toxic contaminants from tannery effluent(2023)
10883 Yirga, A; Yadav, OP; Dey, T Waste Orange Peel Adsorbent for Heavy Metal Removal from Water(2022)Pollution, 8, 2
23951 Vilardi, G; Ochando-Pulido, JM; Verdone, N; Stoller, M; Di Palma, L On the removal of hexavalent chromium by olive stones coated by iron-based nanoparticles: Equilibrium study and chromium recovery(2018)
27501 Nunes, MABS; Fuentes, DP; Mesquita, JAFS; Romano, RCO; Pileggi, RG; Oliveira, PV; Petri, DFS Feasibility of sugarcane bagasse/polydopamine as sustainable adsorbents for Cr(VI) with reusability in cement composition(2023)
22259 Muedi, KL; Masindi, V; Maree, JP; Brink, HG Rapid Removal of Cr(VI) from Aqueous Solution Using Polycationic/Di-Metallic Adsorbent Synthesized Using Fe3+/Al3+ Recovered from Real Acid Mine Drainage(2022)Minerals, 12.0, 10
13933 Negroiu, M; Turcanu, AA; Matei, E; Râpa, M; Covaliu, CI; Predescu, AM; Pantilimon, CM; Coman, G; Predescu, C Novel Adsorbent Based on Banana Peel Waste for Removal of Heavy Metal Ions from Synthetic Solutions(2021)Materials, 14, 14
6133 Parameswari, E; Kalaiarasi, R; Davamani, V; Kalaiselvi, P; Paulsebastian, S; Ilakiya, T Potentials of surface modified biochar for removal of Cr from tannery effluent and its regeneration to ensure circular economy(2024)Bioremediation Journal, 28, 2
14234 Aktar, MS; Shakil, MSR; Tuj-Zohra, F Potentials of bio-adsorbent prepared from coconut fibre in mitigation of pollution from tanning effluent(2023)
Scroll