Knowledge Agora



Similar Articles

Title Biotransformation of starch-based wastewater into bioplastics: Optimization of poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545 using potato wastewater hydrolysate
ID_Doc 24671
Authors González-Rojo, S; Paniagua-García, AI; Díez-Antolínez, R
Title Biotransformation of starch-based wastewater into bioplastics: Optimization of poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545 using potato wastewater hydrolysate
Year 2023
Published
Abstract Biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), have emerged as an alternative to petrochemical-based plastics. The present work explores the production of PHAs based on the biotransformation of potato processing wastewater and addresses two different strategies for PHA recovery. To this end, culture conditions for PHA synthesis by Cupriavidus necator DSM 545 were optimized on a laboratory scale using a response surface methodology-based experimental design. Optimal conditions rendered a PHB, poly(3hydroxybutyrate), accumulation of 83.74 +/- 2.37 % (5.1 +/- 0.2 gL-1), a 1.4-fold increase compared to the initial conditions. Moreover, polymer extraction with non-halogenated agent improved PHB recovery compared to chloroform method (PHB yield up to 78.78 +/- 0.57 %), while maintaining PHB purity. (99.83 +/- 4.95 %). Overall, the present work demonstrated the potential valorization of starch-based wastewater by biotransformation into PHBs, a high value-added product, and showed that recovery approaches more eco-friendly than the traditional treatments could be applied to PHB recovery to some extent.
PDF

Similar Articles

ID Score Article
9579 Jin, Y; de Leeuw, KD; Strik, DPBTB Microbial Recycling of Bioplastics via Mixed-Culture Fermentation of Hydrolyzed Polyhydroxyalkanoates into Carboxylates(2023)Materials, 16.0, 7
13152 Ahuja, V; Singh, PK; Mahata, C; Jeon, JM; Kumar, G; Yang, YH; Bhatia, SK A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater(2024)Microbial Cell Factories, 23, 1
9197 González-Rojo, S; Paniagua-García, AI; Díez-Antolínez, R Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production(2024)Microorganisms, 12.0, 8
20839 Garcia-Chumillas, S; Guerrero-Murcia, T; Nicolas-Liza, M; Monzo, F; Simica, A; Simo-Cabrera, L; Martinez-Espinosa, RM PHBV cycle of life using waste as a starting point: from production to recyclability(2024)
14063 Izaguirre, JK; da Fonseca, MMR; Castañón, S; Villarán, MC; Cesário, MT Giving credit to residual bioresources: From municipal solid waste hydrolysate and waste plum juice to poly (3-hydroxybutyrate)(2020)
29156 Haque, MA; Priya, A; Hathi, ZJ; Qin, ZH; Mettu, S; Lin, CSK Advancements and current challenges in the sustainable downstream processing of bacterial polyhydroxyalkanoates(2022)
9236 Kora, E; Tsaousis, PC; Andrikopoulos, KS; Chasapis, CT; Voyiatzis, GA; Ntaikou, I; Lyberatos, G Production efficiency and properties of poly (3hydroxybutyrate-co-3hydroxyvalerate) generated via a robust bacterial consortium dominated by Zoogloea sp. using acidified discarded fruit juices as carbon source(2023)
6293 Mannina, G; Presti, D; Montiel-Jarillo, G; Carrera, J; Suárez-Ojeda, ME Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review(2020)
12889 Corchado-Lopo, C; Martínez-Avila, O; Marti, E; Llimós, J; Busquets, AM; Kucera, D; Obruca, S; Llenas, L; Ponsá, S Brewer's spent grain as a no-cost substrate for polyhydroxyalkanoates production: Assessment of pretreatment strategies and different bacterial strains(2021)
24957 Fernandez-Dacosta, C; Posada, JA; Kleerebezem, R; Cuellar, MC; Ramirez, A Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: Techno-economic analysis and ex-ante environmental assessment(2015)
Scroll