Knowledge Agora



Similar Articles

Title Development of a body of knowledge for design for disassembly and recycling of high-tech products: a case study on lithium-ion batteries
ID_Doc 24797
Authors El Jalbout, S; Keivanpour, S
Title Development of a body of knowledge for design for disassembly and recycling of high-tech products: a case study on lithium-ion batteries
Year 2024
Published Journal Of Industrial And Production Engineering, 41, 1
Abstract Demand for electronic products is growing, as is the volume of waste electrical and electronic equipment (WEEE). To reduce their environmental impact, particularly during their end-of-life, it is important to apply eco-design practices such as design for disassembly (DFD) and design for recycling (DFR) from the beginning of their development. However, these strategies are not systematically implemented by manufacturers due to several challenges, such as the complexity of the methods, the uncertainty and variability of the materials and components, and the lack of knowledge on DFD and DFR. This study aims to develop a body of knowledge (BOK) for DFD and DFR of electronic products to fill this gap. A systematic comparison of different BOKs has led to the proposal of a BOK composed of four main parts: Areas of Knowledge, Tools and Techniques, Skills and Abilities, and Terminology. The proposed framework was applied to lithium-ion batteries (LIBs) as an example of electronic products that require high-tech solutions for their efficient and sustainable management. This approach is essential for high-tech products, as they often contain valuable and scarce materials that need to be recovered and reused in a circular economy. The results showed that the BOK was an effective tool in supporting the sustainable development of batteries.
PDF

Similar Articles

ID Score Article
229 Harper, GDJ; Kendrick, E; Anderson, PA; Mrozik, W; Christensen, P; Lambert, S; Greenwood, D; Das, PK; Ahmeid, M; Milojevic, Z; Du, WJ; Brett, DJL; Shearing, PR; Rastegarpanah, A; Stolkin, R; Sommerville, R; Zorin, A; Durham, JL; Abbott, AP; Thompson, D; Browning, ND; Mehdi, BL; Bahri, M; Schanider-Tontini, F; Nicholls, D; Stallmeister, C; Friedrich, B; Sommerfeld, M; Driscoll, LL; Jarvis, A; Giles, EC; Slater, PR; Echavarri-Bravo, V; Maddalena, G; Horsfall, LE; Gaines, L; Dai, Q; Jethwa, SJ; Lipson, AL; Leeke, GA; Cowell, T; Farthing, JG; Mariani, G; Smith, A; Iqbal, Z; Golmohammadzadeh, R; Sweeney, L; Goodship, V; Li, Z; Edge, J; Lander, L; Nguyen, VT; Elliot, RJR; Heidrich, O; Slattery, M; Reed, D; Ahuja, J; Cavoski, A; Lee, RB; Driscoll, E; Baker, J; Littlewood, P; Styles, I; Mahanty, S; Boons, F Roadmap for a sustainable circular economy in lithium-ion and future battery technologies(2023)Journal Of Physics-Energy, 5, 2
26151 Thompson, DL; Hartley, JM; Lambert, SM; Shiref, M; Harper, GDJ; Kendrick, E; Anderson, P; Ryder, KS; Gaines, L; Abbott, AP The importance of design in lithium ion battery recycling - a critical review(2020)Green Chemistry, 22, 22
21614 Sommerville, R; Zhu, PC; Rajaeifar, MA; Heidrich, O; Goodship, V; Kendrick, E A qualitative assessment of lithium ion battery recycling processes(2021)
8566 Marshall, J; Gastol, D; Sommerville, R; Middleton, B; Goodship, V; Kendrick, E Disassembly of Li Ion Cells-Characterization and Safety Considerations of a Recycling Scheme(2020)Metals, 10.0, 6
22778 Doose, S; Mayer, JK; Michalowski, P; Kwade, A Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations(2021)Metals, 11.0, 2
22885 Fahimi, A; Ducoli, S; Federici, S; Ye, GZ; Mousa, E; Frontera, P; Bontempi, E Evaluation of the sustainability of technologies to recycle spent lithium-ion batteries, based on embodied energy and carbon footprint(2022)
12326 Bhar, M; Ghosh, S; Krishnamurthy, S; Kaliprasad, Y; Martha, SK A review on spent lithium-ion battery recycling: from collection to black mass recovery(2023)Rsc Sustainability, 1.0, 5
6650 Ducoli, S; Fahimi, A; Mousa, E; Ye, GZ; Federici, S; Frontera, P; Bontempi, E ESCAPE approach for the sustainability evaluation of spent lithium-ion batteries recovery: Dataset of 33 available technologies(2022)
28821 Ferrara, C; Ruffo, R; Quartarone, E; Mustarelli, P Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling(2021)Advanced Energy And Sustainability Research, 2.0, 10
3956 Sheth, RP; Ranawat, NS; Chakraborty, A; Mishra, RP; Khandelwal, M The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective-A Review and Future Directions(2023)Energies, 16, 7
Scroll