Knowledge Agora



Similar Articles

Title Electric vehicle batteries waste management and recycling challenges: a comprehensive review of green technologies and future prospects
ID_Doc 24918
Authors Amusa, HK; Sadiq, M; Alam, G; Alam, R; Siefan, A; Ibrahim, H; Raza, A; Yildiz, B
Title Electric vehicle batteries waste management and recycling challenges: a comprehensive review of green technologies and future prospects
Year 2024
Published Journal Of Material Cycles And Waste Management, 26, 4
Abstract Electric vehicle (EV) batteries have lower environmental impacts than traditional internal combustion engines. However, their disposal poses significant environmental concerns due to the presence of toxic materials. Although safer than lead-acid batteries, nickel metal hydride and lithium-ion batteries still present risks to health and the environment. This study reviews the environmental and social concerns surrounding EV batteries and their waste. It explores the potential threats of these batteries to human health and the environment. It also discusses alternative methods to enhance EV-battery performance, safety, and sustainability, such as hybrid systems of green technologies and innovative recycling processes. Finding alternative materials for EV batteries is crucial to addressing current resource shortage risks and improving EV performance and sustainability. Therefore, the development of efficient and sustainable solutions for the safe handling of retired EV batteries is necessary to ensure carbon neutrality and mitigate environmental and health risks.
PDF

Similar Articles

ID Score Article
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
16420 Akram, MN; Abdul-Kader, W Sustainable Development Goals and End-of-Life Electric Vehicle Battery: Literature Review(2023)Batteries-Basel, 9, 7
32525 Manzetti, S; Mariasiu, F Electric vehicle battery technologies: From present state to future systems(2015)
26882 Martins, LS; Guimaraes, LF; Botelho, AB; Tenorio, JAS; Espinosa, DCR Electric car battery: An overview on global demand, recycling and future approaches towards sustainability(2021)
22876 Iturrondobeitia, M; Vallejo, C; Berroci, M; Akizu-Gardoki, O; Minguez, R; Lizundia, E Environmental Impact Assessment of LiNi1/3M1/3C1/3O2 Hydrometallurgical Cathode Recycling from Spent Lithium-Ion Batteries(2022)Acs Sustainable Chemistry & Engineering, 10.0, 30
16765 Roy, JJ; Rarotra, S; Krikstolaityte, V; Zhuoran, KW; Cindy, YDI; Tan, XY; Carboni, M; Meyer, D; Yan, QY; Srinivasan, M Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability(2022)Advanced Materials, 34, 25
8765 Gupta, NK Battery waste-derived functional materials for the capture and removal of harmful gases(2024)Environmental Science-Advances, 3.0, 8
10196 Li, PW; Luo, SH; Zhang, L; Liu, QY; Wang, YK; Lin, YC; Xu, C; Guo, J; Cheali, P; Xia, XN Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review(2024)
5960 Ali, H; Khan, HA; Pecht, MG Circular economy of Li Batteries: Technologies and trends(2021)
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
Scroll