Knowledge Agora



Similar Articles

Title From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization
ID_Doc 2505
Authors Najar, IN; Sharma, P; Das, R; Tamang, S; Mondal, K; Thakur, N; Gandhi, SG; Kumar, V
Title From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization
Year 2024
Published
Abstract Waste of any origin is one of the most serious global and man-made concerns of our day. It causes climate change, environmental degradation, and human health problems. Proper waste management practices, including waste reduction, safe handling, and appropriate treatment, are essential to mitigate these consequences. It is thus essential to implement effective waste management strategies that reduce waste at the source, promote recycling and reuse, and safely dispose of waste. Transitioning to a circular economy with policies involving governments, industries, and individuals is essential for sustainable growth and waste management. The review focuses on diverse kinds of environmental waste sources around the world, such as residential, industrial, commercial, municipal services, electronic wastes, wastewater sewerage, and agricultural wastes, and their challenges in efficiently valorizing them into useful products. It highlights the need for rational waste management, circularity, and sustainable growth, and the potential of a circular economy to address these challenges. The article has explored the role of thermophilic microbes in the bioremediation of waste. Thermophiles known for their thermostability and thermostable enzymes, have emerged to have diverse applications in biotechnology and various industrial processes. Several approaches have been explored to unlock the potential of thermophiles in achieving the objective of establishing a zero-carbon sustainable bio-economy and minimizing waste generation. Various thermophiles have demonstrated substantial potential in addressing different waste challenges. The review findings affirm that thermophilic microbes have emerged as pivotal and indispensable candidates for harnessing and valorizing a range of environmental wastes into valuable products, thereby fostering the biocircular economy.
PDF

Similar Articles

ID Score Article
8662 Dahiya, D; Sharma, H; Rai, AK; Nigam, PS Application of biological systems and processes employing microbes and algae to Reduce, Recycle, Reuse (3Rs) for the sustainability of circular bioeconomy(2022)Aims Microbiology, 8.0, 1
24490 Das, A; Das, S; Das, N; Pandey, P; Ingti, B; Panchenko, V; Bolshev, V; Kovalev, A; Pandey, P Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials(2023)Agriculture-Basel, 13, 9
4565 Sangiorgio, P; Verardi, A; Dimatteo, S; Spagnoletta, A; Moliterni, S; Errico, S Tenebrio molitorin the circular economy: a novel approach for plastic valorisation and PHA biological recovery(2021)Environmental Science And Pollution Research, 28, 38
8520 Yan, F; Wei, R; Cui, Q; Bornscheuer, UT; Liu, YJ Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum(2021)Microbial Biotechnology, 14.0, 2
21598 Li, Y; Meenatchisundaram, K; Rajendran, K; Gohil, N; Kumar, V; Singh, V; Solanki, MK; Harirchi, S; Zhang, ZQ; Sindhu, R; Taherzadeh, MJ; Awasthi, MK Sustainable Conversion of Biowaste to Energy to Tackle the Emerging Pollutants: A Review(2023)Current Pollution Reports, 9.0, 4
Scroll