Knowledge Agora



Similar Articles

Title Prospects and trends in bioelectrochemical systems: Transitioning from CO2 towards a low-carbon circular bioeconomy
ID_Doc 25074
Authors Modestra, JA; Matsakas, L; Rova, U; Christakopoulos, P
Title Prospects and trends in bioelectrochemical systems: Transitioning from CO2 towards a low-carbon circular bioeconomy
Year 2022
Published
Abstract Resource scarcity and climate change are the most quested topics in view of environmental sustainability. CO2 sequestration through bioelectrochemical systems is an attractive option for fostering bioeconomy development upon several value-added products generation. This review details the state-of-the-art of bioelectrochemical systems for resource recovery from CO2 along with various biocatalysts capable of utilizing CO2. Two bioprocesses (photo-electrosynthesis and chemolithoelectrosynthesis) were discussed projecting their potential for biobased economy development from CO2. Significance of adopting circular strategies for efficient resource recycling, intensifying product value, integrations/interlinking of multiple process chains for the development of circular bioeconomy were discussed. Existing constrains as well as outlook for near establishment of circular bioeconomy from CO2 is presented by weighing fore-sighted plans with current actions. Need for developing CO2-based circular bioeconomy via innovative business models by analyzing social, technical, environmental and product related aspects are also discussed providing a roadmap of gaps to pursue for attaining practicality.
PDF https://doi.org/10.1016/j.biortech.2022.128040

Similar Articles

ID Score Article
8024 Bian, B; Bajracharya, S; Xu, JJ; Pant, D; Saikaly, PE Microbial electrosynthesis from CO2: Challenges, opportunities and perspectives in the context of circular bioeconomy(2020)
7241 Roy, M; Aryal, N; Zhang, YF; Patil, SA; Pant, D Technological progress and readiness level of microbial electrosynthesis and electrofermentation for carbon dioxide and organic wastes valorization(2022)
5508 Tan, ECD; Lamers, P Circular Bioeconomy Concepts-A Perspective(2021)
26548 Wood, JC; Grov, J; Marcellin, E; Heffernan, JK; Hu, SH; Yuan, ZG; Virdis, B Strategies to improve viability of a circular carbon bioeconomy-A techno-economic review of microbial electrosynthesis and gas fermentation(2021)
16899 Marcolongo, DMS; Aresta, M; Dibenedetto, A Stepping toward the carbon circular economy (CCE): Integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels(2021)
8148 Jiang, Y; May, HD; Lu, L; Liang, P; Huang, X; Ren, ZJ Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation(2019)
2461 Jain, A; Sarsaiya, S; Awasthi, MK; Singh, R; Rajput, R; Mishra, UC; Chen, JS; Shi, JS Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks(2022)
8479 Ruiz-López, E; Gandara-Loe, J; Baena-Moreno, F; Reina, TR; Odriozola, JA Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects(2022)
6478 Centi, G; Liu, YF; Perathoner, S Catalysis for Carbon-Circularity: Emerging Concepts and Role of Inorganic Chemistry(2024)
13563 Wu, BT; Lin, RC; O'Shea, R; Deng, C; Rajendran, K; Murphy, JD Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system(2021)
Scroll