Knowledge Agora



Similar Articles

Title Food Waste Valorisation for Biogas-Based Bioenergy Production in Circular Bioeconomy: Opportunities, Challenges, and Future Developments
ID_Doc 25076
Authors Singh, PK; Mohanty, P; Mishra, S; Adhya, TK
Title Food Waste Valorisation for Biogas-Based Bioenergy Production in Circular Bioeconomy: Opportunities, Challenges, and Future Developments
Year 2022
Published
Abstract The fossil fuel-based linear economy has inherent intricacies such as environmental pollution and the continued need for energy sourcing. Consequently, there has been a shift to a more sustainable circular bio-economy, in which biomass waste is valorised for energy generation while reducing the bulk waste materials and greenhouse gas emissions. In modern bioeconomy, biogas is a primary energy production vehicle. Bio-based economy-enabled technologies result in heat and electricity generation, considerable substitution of fossil fuels for transport, and also the manufacture of additional value-added products and byproducts of economic benefits. Wastes from industrial operations, agriculture, and other anthropogenic activities such as food waste (FW) can be biodigested and transformed into valuable energy sources, nutrient-rich manure, and speciality chemicals. However, for instance, although closed anaerobic membrane bioreactors can totally avoid a microbial runoff, membrane fouling frequently affects the hydraulic performance. Recent developments in anaerobic digestion (AD) of FW have diversified into pretreatment, organic loading, additive supplementation, parametric optimisation, and digestate recirculation to enhance the utility potential of biomass for energy and environment. These numerous anaerobic and microbial interventions support biomass valorisation and related processes, resulting in more efficient biomethanation. Valorisation of FW through biogas-based energy production could serve as an essential cog in the wheel of a circular bioeconomy.
PDF

Similar Articles

ID Score Article
4288 Diamantis, V; Eftaxias, A; Stamatelatou, K; Noutsopoulos, C; Vlachokostas, C; Aivasidis, A Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes(2021)
16732 Zbair, M; Limousy, L; Drané, M; Richard, C; Juge, M; Aemig, Q; Trably, E; Escudié, R; Peyrelasse, C; Bennici, S Integration of Digestate-Derived Biochar into the Anaerobic Digestion Process through Circular Economic and Environmental Approaches-A Review(2024)Materials, 17, 14
12398 Archana, K; Visckram, AS; Kumar, PS; Manikandan, S; Saravanan, A; Natrayan, L A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals(2024)
23382 Tsapekos, P; Khoshnevisan, B; Alvarado-Morales, M; Zhu, XY; Pan, JT; Tian, HL; Angelidaki, I Upcycling the anaerobic digestion streams in a bioeconomy approach: A review(2021)
14725 Shah, SV; Lamba, BY; Tiwari, AK; Chen, WH Sustainable biogas production via anaerobic digestion with focus on CSTR technology: A review(2024)
28750 Habchi, S; Pecha, J; Sánek, L; Karouach, F; El Bari, H Sustainable valorization of slaughterhouse waste through anaerobic digestion: A circular economy perspective(2024)
16570 Ellacuriaga, M; García-Cascallana, J; Gómez, X Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy(2021)Fuels, 2, 2
16896 Mignogna, D; Ceci, P; Cafaro, C; Corazzi, G; Avino, P Production of Biogas and Biomethane as Renewable Energy Sources: A Review(2023)Applied Sciences-Basel, 13, 18
5014 Rekleitis, G; Haralambous, KJ; Loizidou, M; Aravossis, K Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy(2020)Energies, 13, 17
9304 Dhull, P; Lohchab, RK; Kumar, S; Kumari, M; Shaloo; Bhankhar, AK Anaerobic Digestion: Advance Techniques for Enhanced Biomethane/Biogas Production as a Source of Renewable Energy(2024)Bioenergy Research, 17.0, 2
Scroll