Knowledge Agora



Similar Articles

Title Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion-A New Material for Sustainable Construction
ID_Doc 25257
Authors Ulewicz, M; Jura, J; Gnatowski, A
Title Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion-A New Material for Sustainable Construction
Year 2024
Published Sustainability, 16, 7
Abstract The article presents an analysis of the possibility of using the waste of polyamide 6 modified with fly ash (in the amount of 5, 10 and 15%) from the burning of wood-palm kernel shells biomass as an addition to cement mortar. Fly ash from the burning of biomass in a circulating fluidized bed boiler (which currently has no practical use) was first used to produce polyamide 6, and then post-production polymer waste (added at 20, 40 and 60%) was used to produce ecological mortar. The use of this type of waste is both economically profitable and desirable due to the need to implement waste material management processes in a closed circuit. The addition of polyamide 6 waste containing 5% fly ash in amounts of 20 and 40% and waste containing 10% ash in 20% to cement mortars improves their mechanical properties. The compressive strength of cement mortars (after 28 days of maturation) containing 20 and 40% of polyamide waste containing 5% fly ash increases by 6.6 and 4.6%, respectively, and the flexural strength by 4.9 and 3.4% compared to the control mortars. However, the compressive strength of mortars with the addition of 20% polyamide waste containing 10% fly ash increases by 4.2% and the flexural strength by 3.7%. Cement mortars modified with waste are characterized by slightly lower water absorption and mechanical strength after the freezing-thawing process (frost resistance) compared to control mortars and do not have an adverse effect on the environment in terms of leaching metal ions.
PDF

Similar Articles

ID Score Article
15058 Seifi, S; Sebaibi, N; Levacher, D; Boutouil, M Mechanical performance of a dry mortar without cement, based on paper fly ash and blast furnace slag(2019)
8172 Modolo, RCE; Senff, L; Ferreira, VM; Tarelho, LAC; Moraes, CAM Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability(2018)Journal Of Material Cycles And Waste Management, 20.0, 2
23188 Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources(2024)Materials, 17, 1
21822 Ulas, MA; Culcu, MB; Ulucan, M Valorization of recycled aggregates to eco-efficient lightweight self-compacting mortars: Studies on microstructure, mechanical, durability, environmental, and economic properties(2024)
14086 Sargent, P; Sandanayake, M; Law, DW; Hughes, DJ; Shifa, F; Borthwick, B; Scott, P Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag(2024)
27709 Ferrández, D; Zaragoza-Benzal, A; Lamberto, RP; Santos, P; Michalak, J Optimizing Masonry Mortar: Experimental Insights into Physico-Mechanical Properties Using Recycled Aggregates and Natural Fibers(2024)Applied Sciences-Basel, 14.0, 14
13559 Morón, A; Ferrández, D; Saiz, P; Morón, C Experimental Study with Cement Mortars Made with Recycled Concrete Aggregate and Reinforced with Aramid Fibers(2021)Applied Sciences-Basel, 11, 17
26952 Pawluczuk, E; Kalinowska-Wichrowska, K; Soomro, M Alkali-Activated Mortars with Recycled Fines and Hemp as a Sand(2021)Materials, 14, 16
15007 Dwivedi, A; Bollam, R; Gupta, S Enhancement of engineering properties of cement mortars with masonry construction and demolition fines via carbon dioxide utilization, storage and chemical treatment(2024)
15678 Czop, M; Lazniewska-Piekarczyk, B; Kajda-Szczesniak, M Evaluation of the Immobilization of Fly Ash from the Incineration of Municipal Waste in Cement Mortar Incorporating Nanomaterials-A Case Study(2022)Energies, 15, 23
Scroll