Knowledge Agora



Similar Articles

Title Flexible Electrochemical Stripping for Wastewater Ammonia Recovery with On-Demand Product Tunability
ID_Doc 25381
Authors Kogler, A; Gong, ML; Williams, KS; Tarpeh, WA
Title Flexible Electrochemical Stripping for Wastewater Ammonia Recovery with On-Demand Product Tunability
Year 2024
Published Environmental Science & Technology Letters, 11, 8
Abstract Nitrogen in wastewater can be recovered to prevent negative environmental, human health, and economic impacts and to enable distributed chemical manufacturing. We developed novel flexible electrochemical stripping (FECS) for tunable recovery of ammonia/ammonium (total ammonia nitrogen, TAN) from urine as (NH4)(2)SO4 and aqueous NH3. Batch and continuous experiments demonstrated that product speciation could be readily controlled by modifying electrochemical cell operation frequency, duration, and applied current without affecting TAN removal. During continuous experiments, FECS recovered NH3 solutions with concentrations similar to ready-to-use cleaners (1% and 2% NH3 (w/w) or 8.22 and 16.4 g/L TAN) and cleaner concentrates (5% NH3 (w/w) or 41.1 g/L TAN), as well as (NH4)(2)SO4 solutions between 5 and 18.4 g/L TAN, approaching commercial fertilizer concentrations (28.4 g/L TAN). Beyond modifying applied current, future process engineering and operating condition optimization should reduce energy consumption, increase recovery efficiency, and enhance economic viability of FECS. Our findings will enable the development and deployment of electrochemical nitrogen recovery in contexts with varying needs for ammonia-based products, paving the way for circular economies that integrate distributed chemical manufacturing with sanitation systems.
PDF

Similar Articles

ID Score Article
24947 Kogler, A; Sharma, N; Tiburcio, D; Gong, ML; Miller, DM; Williams, KS; Chen, X; Tarpeh, WA Long-Term Robustness and Failure Mechanisms of Electrochemical Stripping for Wastewater Ammonia Recovery(2024)Acs Environmental Au, 4, 2
13954 Chen, TL; Chen, LH; Lin, YPJ; Yu, CP; Ma, HW; Chiang, PC Advanced ammonia nitrogen removal and recovery technology using electrokinetic and stripping process towards a sustainable nitrogen cycle: A review(2021)
9007 Zhang, G; Li, BG; Shi, YF; Zhou, Q; Fu, WJ; Zhou, G; Ma, J; Yin, S; Yuan, WH; Miao, SY; Ji, QH; Qu, JH; Liu, HJ Ammonia recovery from nitrate-rich wastewater using a membrane-free electrochemical system(2024)
10896 Davey, CJ; Luqmani, B; Thomas, N; McAdam, EJ Transforming wastewater ammonia to carbon free energy: Integrating fuel cell technology with ammonia stripping for direct power production(2022)
7356 Dhanda, A; Thulluru, LP; Mishra, S; Chowdhury, S; Dubey, BK; Ghangrekar, MM Integrated fuel cell system for sustainable wastewater treatment, ammonia recovery, and power production(2024)
27682 Farghali, M; Chen, ZH; Osman, AI; Ali, IM; Hassan, D; Ihara, I; Rooney, DW; Yap, PS Strategies for ammonia recovery from wastewater: a review(2024)
7464 Karmann, C; Magrová, A; Jenicek, P; Bartácek, J; Kouba, V Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives(2024)
13884 Liu, Y; He, LF; Deng, YY; Zhang, Q; Jiang, GM; Liu, H Recent progress on the recovery of valuable resources from source-separated urine on-site using electrochemical technologies: A review(2022)
24970 Clark, B; Tarpeh, WA Selective Recovery of Ammonia Nitrogen from Wastewaters with Transition Metal-Loaded Polymeric Cation Exchange Adsorbents(2020)Chemistry-A European Journal, 26, 44
24699 Sheikh, M; Harami, HR; Rezakazemi, M; Cortina, JL; Aminabhavi, TM; Valderrama, C Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH3-N recovery technologies: A review(2023)
Scroll