Knowledge Agora



Similar Articles

Title Recycling Unrecycled Plastic and Composite Wastes as Concrete Reinforcement
ID_Doc 25413
Authors Scarpitti, N; Gavio, N; Pol, A; Sanei, SHR
Title Recycling Unrecycled Plastic and Composite Wastes as Concrete Reinforcement
Year 2023
Published Journal Of Composites Science, 7, 1
Abstract The land disposal of waste material is a major environmental threat, and recycling efforts must be exponentially improved to mitigate it. In this paper, a feasibility study was conducted to reinforce concrete with waste materials that are not typically recycled. Compression testing was performed to evaluate the mechanical properties of the concrete specimens. The results were compared with a conventional wire mesh reinforcement used in concrete. Alternative reinforcements that are typically disposed of in landfill were used, namely, plastic regrind, carbon fiber scraps, tempered glass, coarse aggregates, and wire mesh. For each reinforcement type, four specimens were manufactured to evaluate the consistency of the results. Cylindrical specimens with ASME standard dimensions of 10.16 cm x 20.32 cm were tested using a Tinius-Olsen compression testing machine after seven days of curing. A constant strain rate of 0.25 MPa/s was applied until a load drop of 30% was detected. The results show that, while the recycled reinforcements had lower compressive strengths than the wire mesh, they maintained a load-carrying capacity of more than 80%. A major improvement was observed in terms of the ductility and toughness of the reinforced concretes. The recycled-carbon-fiber-reinforced specimens showed 12% strain at failure, a major improvement in concrete ductility. The findings of this research indicate that such recycled particles and fibers without any post-processing can be used in the reinforcement of concrete, with a significant improvement in ductility.
PDF

Similar Articles

ID Score Article
16719 Merli, R; Preziosi, M; Acampora, A; Lucchetti, MC; Petrucci, E Recycled fibers in reinforced concrete: A systematic literature review(2020)
10559 Pawelska-Mazur, M; Kaszynska, M Mechanical Performance and Environmental Assessment of Sustainable Concrete Reinforced with Recycled End-of-Life Tyre Fibres(2021)Materials, 14, 2
27269 Vaccaro, PA; Galvín, AP; Ayuso, J; Barbudo, A; López-Uceda, A Mechanical Performance of Concrete Made with the Addition of Recycled Macro Plastic Fibres(2021)Applied Sciences-Basel, 11.0, 21
13382 Ferrotto, MF; Asteris, PG; Borg, RP; Cavaleri, L Strategies for Waste Recycling: The Mechanical Performance of Concrete Based on Limestone and Plastic Waste(2022)Sustainability, 14, 3
15540 Neves, A; Almeida, J; Cruz, F; Miranda, T; Cunha, VMCF; Rodrigues, M; Costa, J; Pereira, EB Design Procedures for Sustainable Structural Concretes Using Wastes and Industrial By-Products(2023)Applied Sciences-Basel, 13, 4
13642 Kong, XQ; Yao, YB; Wu, BJ; Zhang, WJ; He, WC; Fu, Y The Impact Resistance and Mechanical Properties of Recycled Aggregate Concrete with Hooked-End and Crimped Steel Fiber(2022)Materials, 15, 19
24823 Villagrán-Zaccardi, YA; Marsh, ATM; Sosa, ME; Zega, CJ; De Belie, N; Bernal, SA Complete re-utilization of waste concretes-Valorisation pathways and research needs(2022)
21262 González, MD; Caballero, PP; Fernández, DB; Vidal, MMJ; del Bosque, IFS; Martínez, CM The Design and Development of Recycled Concretes in a Circular Economy Using Mixed Construction and Demolition Waste(2021)Materials, 14.0, 16
4966 Alhazmi, H; Shah, SAR; Anwar, MK; Raza, A; Ullah, MK; Iqbal, F Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization(2021)Polymers, 13, 13
13040 Mohammadhosseini, H; Alyousef, R; Tahir, MM Towards Sustainable Concrete Composites through Waste Valorisation of Plastic Food Trays as Low-Cost Fibrous Materials(2021)Sustainability, 13.0, 4
Scroll