Knowledge Agora



Similar Articles

Title Carbonation of Recycled Concrete Aggregates for New Concrete and Concrete Fines to Make Cement-Free Hollow Blocks
ID_Doc 25509
Authors Bergmans, J; Kamyab, HK; Ghosh, D; Van Mierloo, P; Carens, H; Nielsen, P
Title Carbonation of Recycled Concrete Aggregates for New Concrete and Concrete Fines to Make Cement-Free Hollow Blocks
Year 2024
Published Sustainability, 16, 8
Abstract Mineral carbonation provides a way to increase the recycling of concrete waste in added-value products, and contributes to the principles of the circular economy. At present, most concrete waste is still downcycled. The high water absorption of recycled concrete aggregates, among other factors, impedes their recycling in the concrete industry. The quality of coarse recycled concrete aggregates (RCA) can, however, be enhanced by carbonation. Even when starting with high-grade RCA obtained from a selective demolition process, the carbonation process can decrease the water absorption of the RCA to as low as 3.0%. Concrete with a 50% replacement rate of carbonated RCA can be produced without a significant compressive strength reduction. The research further shows that carbonation can be performed at atmospheric pressure and low CO2 concentrations (e.g., 10%). The recycled concrete fines (RCF, 0-4 mm) in combination with 25% stainless steel slag were used to make zero-cement hollow blocks (39 x 19 x 9 cm) by carbonation curing without using any hydraulic binder. The hollow blocks have a compressive strength of 15.4 MPa at the lab scale. Both technologies were demonstrated on a pilot scale. In both processes, CO2 is immobilized in the resulting construction product. The developed production processes use less primary raw materials and cause less greenhouse-gas emissions than the production of traditional concrete products.
PDF

Similar Articles

ID Score Article
21486 Torrenti, JM; Amiri, O; Barnes-Davin, L; Bougrain, F; Braymand, S; Cazacliu, B; Colin, J; Cudeville, A; Dangla, P; Djerbi, A; Doutreleau, M; Feraille, A; Gueguen, M; Guillot, X; Hou, YL; Izoret, L; Jacob, YP; Jeong, J; Hoong, JDLH; Mahieux, PY; Mai-Nhu, J; Martinez, H; Meyer, V; Morin, V; Pernin, T; Potier, JM; Poulizac, L; Rougeau, P; Saadé, M; Schmitt, L; Sedran, T; Sereng, M; Soive, A; Dos Reys, GS; Turcry, P The FastCarb project: Taking advantage of the accelerated carbonation of recycled concrete aggregates(2022)
9698 Merino-Lechuga, AM; González-Caro, A; Fernández-Ledesma, E; Jiménez, JR; Fernández-Rodríguez, JM; Suescum-Morales, D Accelerated Carbonation of Vibro-Compacted Porous Concrete for Eco-Friendly Precast Elements(2023)Materials, 16.0, 8
19000 Duendar, B; Tugluca, MS; Ilcan, H; Sahin, O; Sahmaran, M The effects of various operational- and materials-oriented parameters on the carbonation performance of low-quality recycled concrete aggregate(2023)
8948 Pico-Cortés, C; Villagrán-Zaccardi, Y Unraveling the Interplay of Physical-Chemical Factors Impacting the Carbonation Performance of Recycled Aggregate Concrete(2023)Materials, 16.0, 16
23463 Zajac, M; Skocek, J; Golek, L; Deja, J Supplementary cementitious materials based on recycled concrete paste(2023)
14772 Los Santos-Ortega, J; Fraile-Garcia, E; Ferreiro-Cabello, J Environmental and Economic Viability of Using Concrete Block Wastes from a Concrete Production Plant as Recycled Coarse Aggregates(2024)Materials, 17, 7
19784 Zhang, N; Xi, B; Li, JB; Liu, L; Song, GH Utilization of CO2 into recycled construction materials: A systematic literature review(2022)Journal Of Material Cycles And Waste Management, 24.0, 6
13496 Zhao, ZF; Courard, L; Groslambert, S; Jehin, T; Léonard, A; Xiao, JZ Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study(2020)
27515 Suescum-Morales, D; Jiménez, JR; Fernández-Rodríguez, JM Use of Carbonated Water as Kneading in Mortars Made with Recycled Aggregates(2022)Materials, 15.0, 14
8875 Di Maria, A; Snellings, R; Alaerts, L; Quaghebeur, M; Van Acker, K Environmental assessment of CO2 mineralisation for sustainable construction materials(2020)
Scroll