Knowledge Agora



Similar Articles

Title Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling
ID_Doc 25513
Authors Oliveira, M; Ramos, A; Monteiro, E; Rouboa, A
Title Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling
Year 2022
Published Sustainability, 14, 3
Abstract Considering waste as a possible new resource for useful purposes is one of the strategies included in the circular economy principles. In fact, industrial processes are seen as great contributors to the formation of waste streams. With the aim to attain more sustainable and resilient systems, in this study, a process flow chart was elaborated in an Aspen Plus computer simulator, to obtain the production of pure glycerol from crude glycerol (a by-product of biodiesel production). This process occurs through fractional vacuum distillation, the methanol recovery route in the deacidification process and the removal of methanol from the reaction medium. The separation stages of the crude glycerol implemented enabled a degree of purification of 99.77%, meeting the specifications of the pharmaceutical use. The developed model allowed for the optimization of the purification process, raising by 40% the mass flow rate of pure glycerol. A conclusion could be drawn that the use of crude glycerol is an excellent option for the development of new products with greater added-value, contributing to the zero waste principles and to the circular economy.
PDF https://www.mdpi.com/2071-1050/14/3/1747/pdf?version=1644219251

Similar Articles

ID Score Article
29560 Kazimierowicz, J; Debowski, M; Zielinski, M; Ignaciuk, A; Mlonek, S; Sanchez, JC The Biosynthesis of Liquid Fuels and Other Value-Added Products Based on Waste Glycerol-A Comprehensive Review and Bibliometric Analysis(2024)Energies, 17.0, 12
9337 Manara, P; Zabaniotou, A Co-valorization of Crude Glycerol Waste Streams with Conventional and/or Renewable Fuels for Power Generation and Industrial Symbiosis Perspectives(2016)Waste And Biomass Valorization, 7.0, 1
22665 Neubauer, M; Steiner, M; Vogi, M; Rudelstorfer, G; Wallek, T; Lux, S Continuous separation and purification of glycerol distillation residues in the sense of circular economy: Experimental proof-of-concept and techno-economic assessment(2023)
12343 D'Angelo, SC; Dall'Ara, A; Mondelli, C; Pérez-Ramírez, J; Papadokonstantakis, S Techno-Economic Analysis of a Glycerol Biorefinery(2018)Acs Sustainable Chemistry & Engineering, 6.0, 12
10797 Chilakamarry, CR; Sakinah, AMM; Zularisam, AW; Pandey, A; Vo, DVN Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review(2021)
10606 Rozulan, N; Halim, SA; Razali, N; Lam, SS A review on direct carboxylation of glycerol waste to glycerol carbonate and its applications(2022)Biomass Conversion And Biorefinery, 12, 10
8666 Corrêa, I; Faria, RPV; Rodrigues, AE Continuous Valorization of Glycerol into Solketal: Recent Advances on Catalysts, Processes, and Industrial Perspectives(2021)Sustainable Chemistry, 2.0, 2
27071 Ye, XP; Ren, SJ Coproduction of Acrylic Acid with a Biodiesel Plant Using CO2 as Reaction Medium: Process Modeling and Production Cost Estimation(2020)Energies, 13.0, 22
10185 Ullah, HI; Dickson, R; Mancini, E; Malanca, AA; Pinelo, M; Mansouri, SS An integrated sustainable biorefinery concept towards achieving zero-waste production(2022)
Scroll