Knowledge Agora



Similar Articles

Title Phycoremediation and biomass production from high strong swine wastewater for biogas generation improvement: An integrated bioprocess
ID_Doc 25515
Authors Dinnebier, HCF; Matthiensen, A; Michelon, W; Tápparo, DC; Fonseca, TG; Favretto, R; Steinmetz, RLR; Treichel, H; Antes, FG; Kunz, A
Title Phycoremediation and biomass production from high strong swine wastewater for biogas generation improvement: An integrated bioprocess
Year 2021
Published
Abstract This study investigated the phycoremediation process from swine digestate integrated with photosynthetic biomass and biogas production in the context of circular economy. Effects of total ammonia nitrogen (TAN) and pH on biomass productivity and nutrients removal, using a central rotational composite design, were evaluated. pH showed a significant effect on biomass productivity and phosphate removal. The strain Chlorella sorokiniana (LBA#39) was able to tolerate up to 1300 mg TAN L-1 at neutral pH, with maximum biomass productivity of 198 mg DW L-1 d-1 and removal of 90 and 70 (%) of phosphate and nitrogen, respectively. The biomass harvested after phycoremediation from digestate showed high content of volatile solids (95.4%) and proteins (59.5%). Biochemical methane potential (BMP) from microalgae monodigestion was 292 ? 10 mLNCH4 gVSadd -1 . The use microalgae biomass addition in the biodigestion process increased up to 32.1% in biogas production. It is an attractive approach to integrating raw materials into existing agro-industrial facilities and improving biogas production, adopting the concept of circular economy and mitigating greenhouse gas emissions.
PDF

Similar Articles

ID Score Article
13081 Magalhaes, IB; Ferreira, J; Castro, JD; Assis, LRD; Calijuri, ML Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems(2022)
26983 Arashiro, LT; Ferrer, I; Pániker, CC; Gómez-Pinchetti, JL; Rousseau, DPL; Van Hulle, SWH; Garf, M Natural Pigments and Biogas Recovery from Microalgae Grown in Wastewater(2020)Acs Sustainable Chemistry & Engineering, 8, 29
12320 Kamravamanesh, D; Kokko, M Source separation and anaerobic co-digestion of blackwater and food waste for biogas production and nutrient recovery(2024)Water Science And Technology, 90.0, 3
29792 Yadav, G; Panda, SP; Sen, R Strategies for the effective solid, liquid and gaseous waste valorization by microalgae: A circular bioeconomy perspective(2020)Journal Of Environmental Chemical Engineering, 8.0, 6
14489 Verma, R; Suthar, S; Chand, N; Mutiyar, PK Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system(2022)
24747 Sarma, S; Sharma, S; Rudakiya, D; Upadhyay, J; Rathod, V; Patel, A; Narra, M Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery(2021)3 Biotech, 11, 8
20570 López-Pacheco, IY; Silva-Núñez, A; García-Perez, JS; Carrillo-Nieves, D; Salinas-Salazar, C; Castillo-Zacarías, C; Afewerki, S; Barceló, D; Iqbal, HNM; Parra-Saldívar, R Phyco-remediation of swine wastewater as a sustainable model based on circular economy(2021)
5084 Rambabu, K; Avornyo, A; Gomathi, T; Thanigaivelan, A; Show, PL; Banat, F Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges(2023)
25272 Nishshanka, GKSH; Thevarajah, B; Nimarshana, PHV; Prajapati, SK; Ariyadasa, TU Real-time integration of microalgae-based bioremediation in conventional wastewater treatment plants: Current status and prospects(2023)
13976 Avila, R; Carrero, E; Vicent, T; Blánquez, P Integration of enzymatic pretreatment and sludge co-digestion in biogas production from microalgae(2021)
Scroll