Knowledge Agora



Similar Articles

Title Optimal Integrated Plant for Biodegradable Polymer Production
ID_Doc 25594
Authors Roldan-San Antonio, JE; Martín, M
Title Optimal Integrated Plant for Biodegradable Polymer Production
Year 2023
Published
Abstract An integrated facility for the production of biodegradable polymers from biomass residues has been developed. Lignocellulosic residues (sawdust), CO2, and organic waste such as manure or sludge are the raw materials. Manure and sludge are digested to provide the nutrients needed to grow algae. Algae are used in full to oil and starch production. The oil is transesterified with methanol generated via biogas dry reforming to obtain biodiesel and glycerol. The starch is used together with glycerol and the pretreated sawdust for the production of the biodegradable polymer. A mathematical optimization approach is used to identify the best use of each resource and the optimal operation of the integrated facility for each case. 4732 kt/yr of manure or 4653 kt/yr of sludge was processed to produce 354 kt/yr of biopolymer and 84 Mgal/yr of fatty acid methyl ester, capturing 2.47 kg of CO2 per kg of biopolymer with production costs of 0.89 and 0.95 $/kg, respectively, and an investment capital of 717 and 712 M$, respectively.
PDF https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.2c05356

Similar Articles

ID Score Article
23500 Hernández, B; Martín, M Optimal Integrated Plant for Production of Biodiesel from Waste(2017)Acs Sustainable Chemistry & Engineering, 5, 8
21289 Roldán-San Antonio, JE; Martín-Hernández, E; Briones, R; Martín, M Process design and scale-up study for the production of polyol-based biopolymers from sawdust(2021)
13253 Zytner, P; Kumar, D; Elsayed, A; Mohanty, A; Ramarao, BV; Misra, M A review on polyhydroxyalkanoate (PHA) production through the use of lignocellulosic biomass(2023)Rsc Sustainability, 1, 9
24382 González-Núñez, S; Martín, M; Amador, C Optimal integrated plant for renewable surfactants production from manure and CO2(2024)
9487 Branco, RHR; Serafim, LS; Xavier, AMRB Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock(2018)Fermentation-Basel, 5.0, 1
25483 Ali, SS; Abdelkarim, EA; Elsamahy, T; Al-Tohamy, R; Li, FH; Kornaros, M; Zuorro, A; Zhu, DC; Sun, JZ Bioplastic production in terms of life cycle assessment: A state-of-the- art review(2023)
6563 Ye, YY; Guo, WS; Ngo, HH; Wei, W; Cheng, DL; Bui, XT; Hoang, NB; Zhang, HY Biofuel production for circular bioeconomy: Present scenario and future scope(2024)
14771 Oliva, G; Buonerba, A; Grassi, A; Hasan, SW; Korshin, GV; Zorpas, AA; Belgiorno, V; Naddeo, V; Zarra, T Microalgae to biodiesel: A novel green conversion method for high-quality lipids recovery and in-situ transesterification to fatty acid methyl esters(2024)
Scroll