26065
|
|
Qaramaleki, SV; Mohedano, AF; Coronella, CJ Phosphorus recovery from aqueous product of hydrothermal carbonization of cow manure(2023) |
20471
|
|
Khoury, O; Gaur, R; Zohar, M; Erel, R; Laor, Y; Posmanik, R Phosphorus recycling from waste activated sludge using the hydrothermal platform: Recovery, solubility and phytoavailability(2023) |
26577
|
|
Boniardi, G; Sessolo, L; Gelmi, E; Turolla, A; Canziani, R Targeting phosphorus recovery from sewage sludge while preventing contaminant spread via combined hydrothermal carbonization and wet chemical extraction(2024) |
9156
|
|
Rasaq, WA; Thiruchenthooran, V; Wirkijowska, K; Valentin, M; Bobak, L; Igwegbe, CA; Bialowiec, A Hydrothermal carbonization of combined food waste: A critical evaluation of emergent products(2024) |
3639
|
|
Dhull, SB; Rose, PK; Rani, J; Goksen, G; Bains, A Food waste to hydrochar: A potential approach towards the Sustainable Development Goals, carbon neutrality, and circular economy(2024) |
21659
|
|
Xu, H; Chen, T; Shan, YD; Chen, K; Ling, N; Ren, LX; Qu, HY; Berge, ND; Flora, JRV; Goel, R; Liu, LB; Liu, ZP; Xu, GH Recycling food waste to agriculture through hydrothermal carbonization sustains food-energy-water nexus(2024) |
7658
|
|
Qaramaleki, SV; Villamil, JA; Mohedano, AF; Coronella, CJ Factors Affecting Solubilization of Phosphorus and Nitrogen through Hydrothermal Carbonization of Animal Manure(2020)Acs Sustainable Chemistry & Engineering, 8, 33 |
10743
|
|
Mahata, S; Periyavaram, SR; Akkupalli, NK; Srivastava, S; Matli, C A review on Co-Hydrothermal carbonization of sludge: Effect of process parameters, reaction pathway, and pollutant transport(2023) |
23976
|
|
Li, QY; Zhang, S; Gholizadeh, M; Hu, X; Yuan, XZ; Sarkar, B; Vithanage, M; Masek, O; Ok, YS Co-hydrothermal carbonization of swine and chicken manure: Influence of cross-interaction on hydrochar and liquid characteristics(2021) |
10800
|
|
Wu, L; Wei, W; Wang, DB; Ni, BJ Improving nutrients removal and energy recovery from wastes using hydrochar(2021) |