Knowledge Agora



Similar Articles

Title Resource recovery and regeneration strategies for spent lithium-ion batteries: Toward sustainable high-value cathode materials
ID_Doc 25667
Authors Gu, KH; Tokoro, C; Takaya, Y; Zhou, J; Qin, WQ; Han, JW
Title Resource recovery and regeneration strategies for spent lithium-ion batteries: Toward sustainable high-value cathode materials
Year 2024
Published
Abstract Traditional cathode recycling methods have become outdated amid growing concerns for high-value output and environmental friendliness in spent Li-ion battery (LIB) recycling. Our study presents a closed-loop approach that involves selective sulfurization roasting, water leaching, and regeneration, efficiently transforming spent ternary Li batteries (i.e., NCM) into high-performance cathode materials. By combining experimental investigations with density functional theory (DFT) calculations, we elucidate the mechanisms within the NCM-C-S roasting system, providing a theoretical foundation for selective sulfidation. Utilizing in situ X-ray diffraction techniques and a series of consecutive experiments, the study meticulously tracks the evolution of regenerating cathode materials that use transition metal sulfides as their primary raw materials. The Li-rich regenerated NCM exhibits exceptional electrochemical performance, including long-term cycling, high-rate capabilities, reversibility, and stability. The closed-loop approach highlights the sustainability and environmental friendliness of this recycling process, with potential applications in other cathode materials, such as LiCoO2 and LiMn2O4. Compared with traditional methods, this short process approach avoids the complexity of leaching, solvent extraction, and reverse extraction, significantly increasing metal utilization and Li recovery rates while reducing pollution and resource waste.
PDF

Similar Articles

ID Score Article
26849 Nair, AV; Jayasree, SS; Baji, DS; Nair, S; Santhanagopalan, D Environment-friendly acids for leaching transition metals from spent-NMC532 cathode and sustainable conversion to potential anodes(2024)Rsc Sustainability, 2, 8
6432 Tan, JH; Wang, Q; Chen, S; Li, ZH; Sun, J; Liu, W; Yang, WS; Xiang, X; Sun, XM; Duan, X Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions(2021)
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
20750 Gnutzmann, MM; Makvandi, A; Ying, BX; Buchmann, J; Lüther, MJ; Helm, B; Nagel, P; Peterlechner, M; Wilde, G; Gomez-Martin, A; Kleiner, K; Winter, M; Kasnatscheew, J Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes(2024)
10397 Liu, JD; Mak, TY; Meng, Z; Wang, XY; Cao, YL; Lu, ZG; Suen, DWS; Lu, XY; Tang, YY Efficient recovery of lithium as Li2CO3 and cobalt as Co3O4 from spent lithium-ion batteries after leaching with p-toluene sulfonic acid(2023)
25565 Liu, FP; Peng, C; Porvali, A; Wang, ZL; Wilson, BP; Lundström, M Synergistic Recovery of Valuable Metals from Spent Nickel-Metal Hydride Batteries and Lithium-Ion Batteries(2019)Acs Sustainable Chemistry & Engineering, 7, 19
21099 Aannir, M; Hakkou, R; Levard, C; Taha, Y; Ghennioui, A; Rose, J; Saadoune, I Towards a closed loop recycling process of end-of-life lithium-ion batteries: Recovery of critical metals and electrochemical performance evaluation of a regenerated LiCoO2(2023)
10196 Li, PW; Luo, SH; Zhang, L; Liu, QY; Wang, YK; Lin, YC; Xu, C; Guo, J; Cheali, P; Xia, XN Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review(2024)
9511 Raj, B; Sahoo, MK; Nikoloski, A; Singh, P; Basu, S; Mohapatra, M Retrieving Spent Cathodes from Lithium-Ion Batteries through Flourishing Technologies(2023)Batteries & Supercaps, 6.0, 1
13503 Bhattacharyya, S; Roy, S; Vajtai, R Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling(2024)
Scroll