Knowledge Agora



Similar Articles

Title Increasing resource circularity in wastewater treatment: Environmental implications of technological upgrades
ID_Doc 25736
Authors Rufi-Salis, M; Petit-Boix, A; Leipold, S; Villalba, G; Rieradevall, J; Moline, E; Gabarrell, X; Carrera, J; Suarez-Ojeda, ME
Title Increasing resource circularity in wastewater treatment: Environmental implications of technological upgrades
Year 2022
Published
Abstract A paradigm shift is needed in wastewater treatment plants (WWTPs) to progress from traditional pollutant removal to resource recovery. However, whether this transformation produces overall environmental benefits will depend on the efficient and sustainable use of resources by emerging technologies. Given that many of these technologies are still being tested at the pilot scale, there is a lack of environmental assessments quantifying their impacts and benefits. In particular, an integrated approach to energy and nutrient recovery can elucidate the potential configurations for WWTPs. In this study, we conduct a life cycle assessment (LCA) of emergent wastewater treatment technologies aimed at increasing resource circularity in WWTPs. We focus on increasing energy self-sufficiency through biogas upgrades and a more radical circular approach aimed at nutrient recovery. Based on a case-study WWTP, we compare its current configuration with (1) implementing autotrophic nitrogen removal in the mainstream and deriving most of the organic matter for biogas production, which increases the quality and quantity of biogas available for energy production; (2) implementing struvite recovery through enhanced biological phosphorus removal (EBPR) as a radical approach to phosphorus management, offering an alternative to mineral fertilizer; and (3) a combination of both approaches. The results show that incremental changes in biogas production are insufficient for compensating for the environmental investment in infrastructure, although autotrophic nitrogen removal is beneficial for increasing the quality of the effluent. Combined phosphorus and energy recovery reduce the environmental impacts from the avoided use of fertilizers and phosphorus and the nitrogen release into water bodies. An integrated approach to resource management in WWTPs is thus desirable and creates new opportunities toward the implementation of circular strategies with low environmental impact in cities.
PDF https://doi.org/10.1016/j.scitotenv.2022.156422

Similar Articles

ID Score Article
28517 Ghimire, U; Sarpong, G; Gude, VG Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability(2021)Acs Omega, 6.0, 18
15001 Shanmugam, K; Gadhamshetty, V; Tysklind, M; Bhattacharyya, D; Upadhyayula, VKK A sustainable performance assessment framework for circular management of municipal wastewater treatment plants(2022)
6046 Kundu, D; Dutta, D; Samanta, P; Dey, S; Sherpa, KC; Kumar, S; Dubey, BK Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability(2022)
24723 Gowd, SC; Ramesh, P; Vigneswaran, VS; Barathi, S; Lee, J; Rajendran, K Life cycle assessment of comparing different nutrient recovery systems from municipal wastewater: A path towards self-reliance and sustainability(2023)
22787 Colella, M; Ripa, M; Cocozza, A; Panfilo, C; Ulgiati, S Challenges and opportunities for more efficient water use and circular wastewater management. The case of Campania Region, Italy(2021)
3181 Masi, E; Rizzo, A; Regelsberger, M The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm(2018)
15379 Kehrein, P; van Loosdrecht, M; Osseweijer, P; Posada, J Exploring resource recovery potentials for the aerobic granular sludge process by mass and energy balances - energy, biopolymer and phosphorous recovery from municipal wastewater(2020)Environmental Science-Water Research & Technology, 6, 8
20088 Yadav, G; Mishra, A; Ghosh, P; Sindhu, R; Vinayak, V; Pugazhendhi, A Technical, economic and environmental feasibility of resource recovery technologies from wastewater(2021)
2113 Zhang, XY; Liu, Y Circular economy is game-changing municipal wastewater treatment technology towards energy and carbon neutrality(2022)
28088 Dereszewska, A; Cytawa, S Circular Economy in Wastewater Treatment Plants-Potential Opportunities for Biogenic Elements Recovery(2023)Water, 15.0, 21
Scroll