Knowledge Agora



Similar Articles

Title Towards Recycling of LLZO Solid Electrolyte Exemplarily Performed on LFP/LLZO/LTO Cells
ID_Doc 25792
Authors Nowroozi, MA; Waidha, AI; Jacob, M; van Aken, PA; Predel, F; Ensinger, W; Clemens, O
Title Towards Recycling of LLZO Solid Electrolyte Exemplarily Performed on LFP/LLZO/LTO Cells
Year 2022
Published Chemistryopen, 11, 3
Abstract All-solid-state lithium ion batteries (ASS-LIBs) are promising due to their safety and higher energy density as compared to that of conventional LIBs. Over the next few decades, tremendous amounts of spent ASS-LIBs will reach the end of their cycle life and would require recycling in order to address the waste management issue along with reduced exploitation of rare elements. So far, only very limited studies have been conducted on recycling of ASS-LIBS. Herein, we investigate the recycling of the Li7La3Zr2O12 (LLZO) solid-state electrolyte in a LiFePO4/LLZO/Li4Ti5O12 system using a hydrometallurgical approach. Our results show that different concentration of the leaching solutions can significantly influence the final product of the recycling process. However, it was possible to recover relatively pure La2O3 and ZrO2 to re-synthesize the cubic LLZO phase, whose high purity was confirmed by XRD measurements.
PDF https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/open.202100274

Similar Articles

ID Score Article
21738 Schneider, K; Kiyek, V; Finsterbusch, M; Yagmurlu, B; Goldmann, D Acid Leaching of Al- and Ta-Substituted Li7La3Zr2O12 (LLZO) Solid Electrolyte(2023)Metals, 13.0, 5
27223 Waidha, AI; Salihovic, A; Jacob, M; Vanita, V; Aktekin, B; Brix, K; Wissel, K; Kautenburger, R; Janek, J; Ensinger, W; Clemens, O Recycling of All-Solid-State Li-ion Batteries: A Case Study of the Separation of Individual Components Within a System Composed of LTO, LLZTO and NMC(2023)Chemsuschem, 16.0, 13
10839 Chen, ZM; Shen, CQ; Liu, FP; Wang, JL Selective Separation and Recovery of Li from Spent LiFePO4 Cathode Materials by Oxidation Roasting Followed by Low-Acid Pressure Leaching(2023)Metals, 13, 11
10397 Liu, JD; Mak, TY; Meng, Z; Wang, XY; Cao, YL; Lu, ZG; Suen, DWS; Lu, XY; Tang, YY Efficient recovery of lithium as Li2CO3 and cobalt as Co3O4 from spent lithium-ion batteries after leaching with p-toluene sulfonic acid(2023)
10525 Liu, K; Wang, JX; Wang, MM; Zhang, QZ; Cao, Y; Huang, LB; Valix, M; Tsang, DCW Low-carbon recycling of spent lithium iron phosphate batteries via a hydro-oxygen repair route(2023)Green Chemistry, 25, 17
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
30033 Prazanová, A; Plachy, Z; Koci, J; Fridrich, M; Knap, V Direct Recycling Technology for Spent Lithium-Ion Batteries: Limitations of Current Implementation(2024)Batteries-Basel, 10.0, 3
7743 Golmohammadzadeh, R; Faraji, F; Jong, B; Pozo-Gonzalo, C; Banerjee, PC Current challenges and future opportunities toward recycling of spent lithium-ion batteries(2022)
28673 Neumann, J; Petranikova, M; Meeus, M; Gamarra, JD; Younesi, R; Winter, M; Nowak, S Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling(2022)Advanced Energy Materials, 12.0, 17
17170 Yadav, P; Jie, CJ; Tan, S; Srinivasan, M Recycling of cathode from spent lithium iron phosphate batteries(2020)
Scroll