Knowledge Agora



Similar Articles

Title Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates
ID_Doc 25813
Authors Andler, R; Valdés, C; Urtuvia, V; Andreessen, CA; Díaz-Barrera, A
Title Fruit residues as a sustainable feedstock for the production of bacterial polyhydroxyalkanoates
Year 2021
Published
Abstract Polyhydroxyalkanoates (PHA) are bio-based and compostable polyesters while at the same time exhibiting physical and mechanical properties similar to conventional fossil-based plastic materials. To make the biotechnical production of PHA economically feasible, the utilization of a low-value feedstock, such as lignocellulosic biomass (LCB), is a common strategy to reduce both, the production costs and the energy consumption. The main problem of using LCB is the need of time-consuming, expensive and even hazardous pretreatments due to the resistance of those substrates to direct bioconversion by microorganisms. Preprocessing of LCB might claim make up for more than 30% of the total PHA production costs. Amongst carbon-rich waste materials, agricultural and in particular fruit residues are highly promising substrates since they are abundant, easily available and most importantly contains high amounts of fermentable sugars. A PHA production system based on fruit residues that do not require elaborate pretreatment represents a cleaner and sustainable process while at the same time making use of an agricultural waste stream. In addition to these characteristics, fruit residues can be considered as a sustainable substrate for PHA production because they do not compete directly with food crops. Scaling up and optimizing this process to utilize by-products from the fruit industry together with the integration of strategies to reduce energy, water and mass resources will not only make the production of microbial bioplastics such as PHA an eco-friendly process, but also help transform our industry into a bioeconomy with circular product streams. In this study, the use of fruit residues as potential feedstock in PHA production processes was analyzed, including biochemical pathways, pretreatments, production yields and other biotechnological aspects.
PDF

Similar Articles

ID Score Article
13253 Zytner, P; Kumar, D; Elsayed, A; Mohanty, A; Ramarao, BV; Misra, M A review on polyhydroxyalkanoate (PHA) production through the use of lignocellulosic biomass(2023)Rsc Sustainability, 1, 9
16962 González-Rojo, S; Díez-Antolínez, R Production of polyhydroxyalkanoates as a feasible alternative for an integrated multiproduct lignocellulosic biorefinery(2023)
9236 Kora, E; Tsaousis, PC; Andrikopoulos, KS; Chasapis, CT; Voyiatzis, GA; Ntaikou, I; Lyberatos, G Production efficiency and properties of poly (3hydroxybutyrate-co-3hydroxyvalerate) generated via a robust bacterial consortium dominated by Zoogloea sp. using acidified discarded fruit juices as carbon source(2023)
27526 Hassan, S; Ngo, T; Ball, AS Valorisation of Sugarcane Bagasse for the Sustainable Production of Polyhydroxyalkanoates(2024)Sustainability, 16.0, 5
8254 Andhalkar, VV; Ahorsu, R; de María, PD; Winterburn, J; Medina, F; Constantí, M Valorization of Lignocellulose by Producing Polyhydroxyalkanoates under Circular Bioeconomy Premises: Facts and Challenges(2022)
6925 Allegue, LD; Ventura, M; Melero, JA; Puyol, D Integrated sustainable process for polyhydroxyalkanoates production from lignocellulosic waste by purple phototrophic bacteria(2021)Global Change Biology Bioenergy, 13, 5
23701 Adeleye, AT; Odoh, CK; Enudi, OC; Banjoko, OO; Osiboye, OO; Odediran, ET; Louis, H Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass(2020)
14063 Izaguirre, JK; da Fonseca, MMR; Castañón, S; Villarán, MC; Cesário, MT Giving credit to residual bioresources: From municipal solid waste hydrolysate and waste plum juice to poly (3-hydroxybutyrate)(2020)
10156 Valle, C; Voss, M; Gaudino, EC; Forte, C; Cravotto, G; Tabasso, S Harnessing Agri-Food Waste as a Source of Biopolymers for Agriculture(2024)Applied Sciences-Basel, 14, 10
12889 Corchado-Lopo, C; Martínez-Avila, O; Marti, E; Llimós, J; Busquets, AM; Kucera, D; Obruca, S; Llenas, L; Ponsá, S Brewer's spent grain as a no-cost substrate for polyhydroxyalkanoates production: Assessment of pretreatment strategies and different bacterial strains(2021)
Scroll