Knowledge Agora



Similar Articles

Title Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling
ID_Doc 25863
Authors Isherwood, PJM
Title Reshaping the Module: The Path to Comprehensive Photovoltaic Panel Recycling
Year 2022
Published Sustainability, 14, 3
Abstract The market for photovoltaic modules is expanding rapidly, with more than 500 GW installed capacity. Consequently, there is an urgent need to prepare for the comprehensive recycling of end-of-life solar modules. Crystalline silicon remains the primary photovoltaic technology, with CdTe and CIGS taking up much of the remaining market. Modules can be separated by crushing or cutting, or by thermal or solvent-based delamination. Separation and extraction of semiconductor materials can be achieved through manual, mechanical, wet or dry chemical means, or a combination. Crystalline silicon modules are currently recycled through crushing and mechanical separation, but procedures do exist for extraction and processing of intact wafers or wafer pieces. Use of these processes could lead to the recovery of higher grades of silicon. CdTe panels are mostly recycled using a chemical leaching process, with the metals recovered from the leachate. CIGS can be recycled through oxidative removal of selenium and thermochemical recovery of the metals, or by electrochemical or hydrometallurgical means. A remaining area of concern is recycling of the polymeric encapsulant and backsheet materials. There is a move away from the use of fluorinated backsheet polymers which may allow for improved recycling, but further research is required to identify materials which can be recycled readily whilst also being able to withstand outdoor environments for multi-decadal timespans.
PDF

Similar Articles

ID Score Article
5208 Heath, GA; Silverman, TJ; Kempe, M; Deceglie, M; Ravikumar, D; Remo, T; Cui, H; Sinha, P; Libby, C; Shaw, S; Komoto, K; Wambach, K; Butler, E; Barnes, T; Wade, A Research and development priorities for silicon photovoltaic module recycling to support a circular economy(2020)Nature Energy, 5, 7
13881 Gahlot, R; Mir, S; Dhawan, N Recycling of Discarded Photovoltaic Solar Modules for Metal Recovery: A Review and Outlook for the Future(2022)Energy & Fuels, 36, 24
23321 Crespo, B; Cavanaugh, C; Potter, A; Yaniger, S; Gaustad, G; Wilkinson, C Technoeconomic feasibility of photovoltaic recycling(2024)International Journal Of Applied Glass Science, 15, 4
29346 Keerthivasan, T; Madhesh, R; Srinivasan, M; Ramasamy, P Photovoltaic recycling: enhancing silicon wafer recovery process from damaged solar panels(2024)Journal Of Materials Science-Materials In Electronics, 35.0, 12
6904 Camargo, PSS; Domingues, AD; Palomero, JPG; Cenci, MP; Kasper, AC; Dias, PR; Veit, HM c-Si PV module recycling: Analysis of the use of a mechanical pre-treatment to reduce the environmental impact of thermal treatment and enhance materials recovery(2023)Waste Management & Research, 41, 11
13184 Ansanelli, G; Fiorentino, G; Tammaro, M; Zucaro, A A Life Cycle Assessment of a recovery process from End-of-Life Photovoltaic Panels(2021)
24533 Palitzsch, W; Loser, U Integrated PV-Recycling - More Efficient, More Effective(2017)
10250 Tembo, PM; Subramanian, V Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review(2023)
9909 Ko, JW; Kim, K; Sohn, JW; Jang, H; Lee, HS; Kim, D; Kang, YM Review on Separation Processes of End-of-Life Silicon Photovoltaic Modules(2023)Energies, 16.0, 11
9072 Cui, H; Heath, G; Remo, T; Ravikumar, D; Silverman, T; Deceglie, M; Kempe, M; Engel-Cox, J Technoeconomic analysis of high-value, crystalline silicon photovoltaic module recycling processes(2022)
Scroll