Knowledge Agora



Similar Articles

Title Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria
ID_Doc 25888
Authors Lederer, J; Trinkel, V; Fellner, J
Title Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria
Year 2017
Published
Abstract A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22%, which is suggested by some studies, the limit values for cements as defined by the BMLFUW (2016) will be exceeded. Furthermore, the concrete produced from this cement will not be recyclable anymore due to its high total heavy metal contents. This and the comparatively high contribution of MSWI fly ashes to total heavy metal contents in cements indicate their relatively low resource potential if compared to other secondary raw materials in the cement industry. (C) 2016 Elsevier Ltd. All rights reserved.
PDF

Similar Articles

ID Score Article
23188 Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources(2024)Materials, 17, 1
10647 Loginova, E; Schollbach, K; Proskurnin, M; Brouwers, HJH Municipal solid waste incineration bottom ash fines: Transformation into a minor additional constituent for cements(2021)
15678 Czop, M; Lazniewska-Piekarczyk, B; Kajda-Szczesniak, M Evaluation of the Immobilization of Fly Ash from the Incineration of Municipal Waste in Cement Mortar Incorporating Nanomaterials-A Case Study(2022)Energies, 15, 23
12636 Joseph, AM; Snellings, R; Van den Heede, P; Matthys, S; De Belie, N The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View(2018)Materials, 11.0, 1
22133 Joseph, AM; Matthys, S; De Belie, N Properties of Concrete with Recycled Aggregates Giving a Second Life to Municipal Solid Waste Incineration Bottom Ash Concrete(2022)Sustainability, 14.0, 8
25697 Li, JQ Municipal Solid Waste Incineration Ash-Incorporated Concrete: One Step towards Environmental Justice(2021)Buildings, 11, 11
64603 Loginova, E; Volkov, DS; de Wouw, PMFV; Florea, MVA; Brouwers, HJH Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash(2019)
12473 Serjun, VZ Recycling of Different Incineration Ashes in the Construction Sector: Perspectives from Slovenia(2024)Sustainability, 16.0, 12
18496 Fernando, S; Gunasekara, C; Law, DW; Nasvi, MCM; Setunge, S; Dissanayake, R Life cycle assessment and cost analysis of fly ash-rice husk ash blended alkali-activated concrete(2021)
3238 Morales, LF; Herrera, K; López, JE; Aguado, R; Saldarriaga, JF Circular economy strategy for the valorization of fly ash as a substitute for cement in monoliths (resistance and reactivity evaluation)(2024)Environmental Progress & Sustainable Energy, 43, 3
Scroll