Knowledge Agora



Similar Articles

Title Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore
ID_Doc 2601
Authors Arora, S; Jung, J; Liu, M; Li, X; Goel, A; Chen, JL; Song, S; Anderson, C; Chen, DX; Leong, K; Lim, SH; Fong, SL; Ghosh, S; Lin, A; Kua, HW; Tan, HTW; Dai, YJ; Wang, CH
Title Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore
Year 2021
Published
Abstract Organic waste, the predominant component of global solid waste, has never been higher, resulting in increased landfilling, incineration, and open dumping that releases greenhouse gases and toxins that contribute to global warming and environmental pollution. The need to create and adopt sustainable closed-loop systems for waste reduction and valorization is critical. Using organic waste as a feedstock, gasification and pyrolysis systems can produce biooil, syngas, and thermal energy, while reducing waste mass by as much as 85-95% through conversion into biochar, a valuable byproduct with myriad uses from soil conditioning to bioremediation and carbon sequestration. Here, we present a novel case study detailing the circular economy of gasification biochar in Singapore's Gardens by the Bay. Biochar produced from horticultural waste within the Gardens was tested as a partial peat moss substitute in growing lettuce, pak choi, and pansy, and found to be a viable substitute for peat moss. At low percentages of 20-30% gasification biochar, fresh weight yields for lettuce and pak choi were comparable to or exceeded those of plants grown in pure peat moss. The biochar was also analyzed as a potential additive to concrete, with a 2% biochar mortar compound found to be of suitable strength for non-structural functions, such as sidewalks, ditches, and other civil applications. These results demonstrate the global potential of circular economies based on local biochar creation and on-site use through the valorization of horticultural waste via gasification, generating clean, renewable heat or electricity, and producing a carbon-neutral to-negative byproduct in the form of biochar. They also indicate the potential of scaled-up pyrolysis or gasification systems for a circular economy in waste management. (c) 2021 Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
4534 Hu, Q; Jung, J; Chen, DX; Leong, K; Song, S; Li, FH; Mohan, BC; Yao, ZY; Prabhakar, AK; Lin, XH; Lim, EY; Zhang, L; Souradeep, G; Ok, YS; Kua, HW; Li, SFY; Tan, HTW; Dai, YJ; Tong, YW; Peng, YH; Joseph, S; Wang, CH Biochar industry to circular economy(2021)
404 Singh, E; Mishra, R; Kumar, A; Shukla, SK; Lo, SL; Kumar, S Circular economy-based environmental management using biochar: Driving towards sustainability(2022)
3840 Lee, JTE; Ok, YS; Song, S; Dissanayake, PD; Tian, HL; Tio, ZK; Cui, RF; Lim, EY; Jong, MC; Hoy, SH; Lum, TQH; Tsui, TH; San Yoon, C; Dai, YJ; Wang, CH; Tan, HTW; Tong, YW Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment(2021)
28894 Yrjälä, K; Ramakrishnan, M; Salo, E Agricultural waste streams as resource in circular economy for biochar production towards carbon neutrality(2022)
10366 Racek, J; Chorazy, T; Miino, MC; Vrsanská, M; Brtnicky, M; Mravcová, L; Kucerík, J; Hlavínek, P Biochar production from the pyrolysis of food waste: Characterization and implications for its use(2024)
9313 Osman, AI; Fawzy, S; Farghali, M; El-Azazy, M; Elgarahy, AM; Fahim, RA; Maksoud, MIAA; Ajlan, AA; Yousry, M; Saleem, Y; Rooney, DW Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review(2022)Environmental Chemistry Letters, 20.0, 4
23642 Kochanek, J; Soo, RM; Martinez, C; Dakuidreketi, A; Mudge, AM Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review(2022)
15166 Ottani, F; Pedrazzi, S; Morselli, N; Puglia, M; Allesina, G Seeking the synergistic potential of biochar integration in municipal composting plants for techno-economic and environmental leverage(2024)
1735 Zuhara, S; Zakaria, Y; McKay, G Potential of GTL biosolids in a circular economy: investigating blending, pyrolysis, activation, and characterisation(2024)Environmental Technology, 45, 20
2917 Khan, R; Shukla, S; Kumar, M; Zuorro, A; Pandey, A Sewage sludge derived biochar and its potential for sustainable environment in circular economy: Advantages and challenges(2023)
Scroll