Knowledge Agora



Similar Articles

Title Biochar application in organics and ultra-violet quenching substances removal from sludge dewatering leachate for algae production
ID_Doc 26122
Authors Pap, S; Stankovits, GJ; Gyalai-Korpos, M; Makó, M; Erdélyi, I; Sekulic, MT
Title Biochar application in organics and ultra-violet quenching substances removal from sludge dewatering leachate for algae production
Year 2021
Published
Abstract Algae production in nutrient rich sludge dewatering leachate after biogas production is a promising option for wastewater treatment plants. However, the ultra-violet (UV) absorbing characteristic of UV-quenching substances (UVQS) existing in these waters can notably reduce the light transmission within the liquid body. The present work demonstrates a comparative adsorptive removal of UVQS, and other organic substances (expressed as COD and TOC) onto the "acid catalyst" functionalised adsorbent (PPhA) and commercial activated carbon (CAC) from leachate originating from leftover sludge dewatering after biogas production. Laboratory scale column studies were performed to investigate the adsorption performance of selected parameters. The PPhA increased the UV transmittance of leachate more than 4 times and outperformed CAC. Bed Depth Service Time and Yan models were used on the experimental data in order to estimate the maximum adsorption capacity and evaluate the characteristics of the fixed-bed. The PPhA equilibrium uptake of COD and TOC amounted to 5.7 mg/ g and 0.9 mg/g, respectively. The postulated removal mechanism in environmentally relevant conditions (e.g., pH neutral) suggested a complex interaction between the biochar and organic macromolecules. Diluted phosphoric acid solution (0.01 mol/L) was successfully used for the column regeneration. Beside the UVQS, PPhA showed affinity towards toxic heavy metals (e.g., Pb, Ni, Co) pointing out the rich surface chemistry of the PPhA. Based on the obtained results and successfully implemented scale-up methodology, the low-cost PPhA adsorbent might effectively compete with the CAC as a highly efficient platform in wastewaters leachate processing.
PDF

Similar Articles

ID Score Article
14799 Medeiros, DCCD; Chelme-Ayala, P; El-Din, MG Sludge-based activated biochar for adsorption treatment of real oil sands process water: Selectivity of naphthenic acids, reusability of spent biochar, leaching potential, and acute toxicity removal(2023)
24478 Biswal, BK; Balasubramanian, R Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review(2023)Journal Of Environmental Chemical Engineering, 11, 5
6368 Hu, JW; Zhao, L; Luo, JM; Gong, HB; Zhu, NW A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives(2022)
13385 Bentley, MJ; Solomon, ME; Marten, BM; Shimabuku, KK; Cook, SM Evaluating landfill leachate treatment by organic municipal solid waste-derived biochar(2021)Environmental Science-Water Research & Technology, 7, 11
28814 Pap, S; Boyd, KG; Taggart, MA; Sekulic, MT Circular economy based landfill leachate treatment with sulphur-doped microporous biochar(2021)
16394 Devre, PV; Gore, AH Agro-Waste Valorization into Carbonaceous Eco-Hydrogel: A Circular Economy and Zero Waste Tactic for Doxorubicin Removal in Water/Wastewater(2023)Langmuir, 40, 1
14405 Photiou, P; Koutsokeras, L; Constantinides, G; Koutinas, M; Vyrides, I Phosphate removal from synthetic and real wastewater using thermally treated seagrass residues of Posidonia oceanica(2021)
14597 Guilhen, SN; Rovani, S; de Araujo, LG; Tenório, JAS; Masek, O Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation(2021)
26753 Collivignarelli, MC; Caccamo, FM; Bellazzi, S; Llamas, MM; Sorlini, S; Milanese, C Survey on Lombardy Region Wastewater Effluents and Application of Biochar from Biological Sewage Sludge for Wastewater Treatment(2023)Water, 15, 20
13509 Mayilswamy, N; Nighojkar, A; Edirisinghe, M; Sundaram, S; Kandasubramanian, B Sludge-derived biochar: Physicochemical characteristics for environmental remediation(2023)Applied Physics Reviews, 10, 3
Scroll