Knowledge Agora



Similar Articles

Title Ammonium Recovery from Synthetic Wastewaters by Using Zeolitic Mixtures: A Desorption Batch-Study
ID_Doc 26187
Authors Muscarella, SM; Laudicina, VA; Badalucco, L; Conte, P; Mannina, G
Title Ammonium Recovery from Synthetic Wastewaters by Using Zeolitic Mixtures: A Desorption Batch-Study
Year 2023
Published Water, 15, 19
Abstract Resource recovery from wastewater is very important in view of a circular economy approach in the water field. Among the different technologies applied to realize circular economy, an attractive option is the use of nutrient-enriched media that can be utilized as slow-release fertilizers. Zeolites have been re-discovered for their key role in ammonium (NH4+) adsorption from treated wastewater. Although many studies have been carried out to assess the ability of zeolites to adsorb NH4+, only few papers concerning NH4+ desorption from zeolites are available in the literature. Therefore, this study investigated NH4+ desorption from mineralogically different zeolites, before (ZNS and ZNC) and after (ZSS and ZSC) their treatment with sodium chloride. The zeolites differed in mordenite content. The amount of the desorbed NH4+ varied from 78 to 84% of the total NH4+ adsorbed. In particular, the NaCl-treated materials showed the largest desorption (27.6 +/- 0.2 mg L-1, and 27.9 +/- 0.7 mg L-1, ZSS, and ZSC, respectively) as compared to the untreated zeolites (22.9 +/- 0.3 mg L-1, and 24.2 +/- 0.3 mg L-1, ZNS, and ZNC, respectively) because of the different affinity of the cations for the zeolite surface. A monomodal pseudo-first-order model best approximated the desorption kinetics, suggesting only one mechanism of NH4+ desorption from zeolites. Such a mechanism is based on the ion exchange between dissolved Na+ and adsorbed NH4+. The desorption kinetics also showed that NH4+ desorbed slower from the NaCl-treated zeolites than the untreated ones. This effect was explained by the different affinity of Na+ and NH4+ for the zeolite surfaces as due to the diverse sizes of the Na+ and NH4+ hydration spheres. By revealing the effect of zeolite mineralogy and surface treatments in the desorption of NH4+, this study can suggest new and effective synthetic strategies for the achievement of cheap new materials to be applied in environmental remediation within a circular economy perspective.
PDF https://www.mdpi.com/2073-4441/15/19/3479/pdf?version=1696314987

Similar Articles

ID Score Article
21569 Muscarella, SM; Laudicina, VA; Di Trapani, D; Mannina, G Recovering ammonium from real treated wastewater by zeolite packed columns: The effect of flow rate and particle diameter(2024)
27938 Gagliano, E; Sgroi, M; Falciglia, PP; Belviso, C; Cavalcante, F; Lettino, A; Vagliasindi, FGA; Roccaro, P Removal of ammonium from wastewater by zeolite synthetized from volcanic ash: Batch and column tests(2022)Journal Of Environmental Chemical Engineering, 10.0, 3
21292 Pinelli, D; Foglia, A; Fatone, F; Papa, E; Maggetti, C; Bovina, S; Frascari, D Ammonium recovery from municipal wastewater by ion exchange: Development and application of a procedure for sorbent selection(2022)Journal Of Environmental Chemical Engineering, 10.0, 6
24479 Mayor, A; Reig, M; Vecino, X; Cortina, JL; Valderrama, C Advanced Hybrid System for Ammonium Valorization as Liquid Fertilizer from Treated Urban Wastewaters: Validation of Natural Zeolites Pretreatment and Liquid-Liquid Membrane Contactors at Pilot Plant Scale(2023)Membranes, 13, 6
12913 Medri, V; Papa, E; Landi, E; Maggetti, C; Pinelli, D; Frascari, D Ammonium removal and recovery from municipal wastewater by ion exchange using a metakaolin K-based geopolymer(2022)
12543 Stocker, K; Ellersdorfer, M Phosphate Fixation and P Mineralogy on Natural and Ca-Modified Zeolites During Simultaneous Nutrient Removal(2022)Water Air And Soil Pollution, 233.0, 2
10644 Ugwu, EI; Othmani, A; Nnaji, CC A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment(2022)International Journal Of Environmental Science And Technology, 19, 8
10507 Mokrzycki, J; Franus, W; Panek, R; Sobczyk, M; Rusiniak, P; Szerement, J; Jarosz, R; Marcinska-Mazur, L; Bajda, T; Mierzwa-Hersztek, M Zeolite Composite Materials from Fly Ash: An Assessment of Physicochemical and Adsorption Properties(2023)Materials, 16, 6
26593 Sayavedra, SM; Dockx, L; Sigurnjak, I; Akyol, C; Meers, E Post-treatment of high-rate activated sludge effluent via zeolite adsorption and recovery of ammonium-nitrogen as alternative fertilising products(2024)
14127 Lobo-Recio, MA; Rodrigues, C; Jeremias, TC; Lapolli, FR; Padilla, I; López-Delgado, A Highly efficient removal of aluminum, iron, and manganese ions using Linde type-A zeolite obtained from hazardous waste(2021)
Scroll