13378
|
|
Guo, XY; Zhang, XS; Wang, YX; Tian, XD; Qiao, Y Converting furfural residue wastes to carbon materials for high performance supercapacitor(2022)Green Energy & Environment, 7, 6 |
26987
|
|
Samantray, R; Manickavasakam, K; Vivekanand; Pradhan, B; Kandasamy, M; Mishra, SC; Misnon, II; Jose, R Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application(2024) |
23425
|
|
Jafari, M; Botte, GG Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors(2024)Acs Omega, 9, 11 |
10788
|
|
Yan, B; Zheng, JJ; Feng, L; Zhang, Q; Zhang, CM; Ding, YC; Han, JQ; Jiang, SH; He, SJ Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials(2023) |
8583
|
|
Chodankar, NR; Patil, SJ; Hwang, SK; Shinde, PA; Karekar, SV; Raju, GSR; Ranjith, KS; Olabi, AG; Dubal, DP; Huh, YS; Han, YK Refurbished carbon materials from waste supercapacitors as industrial-grade electrodes: Empowering electronic waste(2022) |
29815
|
|
Lin, YR; Hwang, YK; Chan, KK; Wu, CL; Chen, JZ; Chang, FC Lignosulfonate-derived porous carbon via self-activation for supercapacitor electrodes(2024) |
10672
|
|
Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1 |