Knowledge Agora



Similar Articles

Title Recycling and high-value utilization of polyethylene terephthalate wastes: A review
ID_Doc 26637
Authors Ren, TX; Zhan, HH; Xu, HZ; Chen, LF; Shen, W; Xu, YD; Zhao, DF; Shao, YY; Wang, YT
Title Recycling and high-value utilization of polyethylene terephthalate wastes: A review
Year 2024
Published
Abstract Polyethelene terephthalate (PET) is a well-known thermoplastic, and recycling PET waste is important for the natural environment and human health. This study provides a comprehensive overview of the recycling and reuse of PET waste through energy recovery and physical, chemical, and biological recycling. This article summarizes the recycling methods and the high-value products derived from PET waste, specifically detailing the research progress on regenerated PET prepared by the mechanical recycling of fiber/yarn, fabric, and composite materials, and introduces the application of PET nanofibers recycled by physical dissolution and electrospinning in fields such as filtration, adsorption, electronics, and antibacterial materials. This article explains the energy recovery of PET through thermal decomposition and comprehensively discusses various chemical recycling methods, including the reaction mechanisms, catalysts, conversion efficiencies, and reaction products, with a brief introduction to PET biodegradation using hydrolytic enzymes provided. The analysis and comparison of various recycling methods indicated that the mechanical recycling method yielded PET products with a wide range of applications in composite materials. Electrospinning is a highly promising recycling strategy for fabricating recycled PET nanofibers. Compared to other methods, physical recycling has advantages such as low cost, low energy consumption, high value, simple processing, and environmental friendliness, making it the preferred choice for the recycling and high-value utilization of waste PET.
PDF

Similar Articles

ID Score Article
14519 Ghosal, K; Nayak, C Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions - hope vs. hype(2022)Materials Advances, 3, 4
28305 Enache, AC; Grecu, I; Samoila, P Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles(2024)Materials, 17.0, 12
22015 Caputto, MDD; Navarro, R; Valentín, JL; Marcos-Fernández, A Chemical upcycling of poly(ethylene terephthalate) waste: Moving to a circular model(2022)Journal Of Polymer Science, 60.0, 24
20128 Zimmermann, W Biocatalytic recycling of polyethylene terephthalate plastic(2020)Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 378, 2176
29107 Weiland, F; Kohlstedt, M; Wittmann, C Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry(2024)
6476 Brivio, L; Tollini, F PET recycling: Review of the current available technologies and industrial perspectives(2022)
13748 Sui, BB; Wang, T; Fang, JX; Hou, ZX; Shu, T; Lu, ZH; Liu, F; Zhu, YS Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes(2023)
12968 Patel, A; Chang, AC; Perry, S; Soong, YHV; Ayafor, C; Wong, HW; Xie, DM; Sobkowicz, MJ Melt Processing Pretreatment Effects on Enzymatic Depolymerization of Poly(ethylene terephthalate)(2022)Acs Sustainable Chemistry & Engineering, 10.0, 41
9279 Uekert, T; DesVeaux, JS; Singh, A; Nicholson, SR; Lamers, P; Ghosh, T; McGeehan, JE; Carpenter, AC; Beckham, GT Life cycle assessment of enzymatic poly(ethylene terephthalate) recycling(2022)Green Chemistry, 24.0, 17
19969 Damayanti; Wu, HS Strategic Possibility Routes of Recycled PET(2021)Polymers, 13.0, 9
Scroll