Knowledge Agora



Similar Articles

Title Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application
ID_Doc 26987
Authors Samantray, R; Manickavasakam, K; Vivekanand; Pradhan, B; Kandasamy, M; Mishra, SC; Misnon, II; Jose, R
Title Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application
Year 2024
Published
Abstract To develop materials of lower embodied energy and materials footprint for energy storage industry, the present work reports synthesis of porous carbon from a waste wetland weed (wild sugarcane) using low process parametric conditions (temperature and impregnation ratio) and their electrochemical capacitive (synonymously known as supercapacitors) charge storage performance in aqueous and redox active electrolytes. The phase, surface chemistry, physical surface, and morphology of the porous carbon thus developed are studied in detail using X-ray diffraction, gas adsorption measurements, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy techniques. Porous carbon synthesized at 500 degrees C, with the activator ZnCl2, resulted in a combination of micro and meso pores and a specific surface area similar to 1294 m(2) g(-1). The optimized electrodes show outstanding energy storage performance, viz. specific capacitance of similar to 414 F g(-1) (three-electrode system) and similar to 197 F g(-1) (two-electrode system) at 1 A g(-1) current density in aqueous 1 M H2SO4 electrolyte. The porous activated carbon showed high performance in terms of electrochemical stability of 96 % in half cell configuration for 10,000 cycles, while the symmetric device showed 80 % cyclic stability for 5000 cycles in full cell configuration. Addition of redox active 0.01 M hydroquinone in the 1 M H2SO4 significantly improved the storage capacity to 540 C g(-1) at current density of 3 A g(-1) in two-electrode configuration and maintained 72 % of capacity for 5000 cycles. The redox-active symmetric supercapacitors show an energy density similar to 26.9 W h kg(-1) and power density similar to 5527 W kg(-1) and other related electrochemical properties.
PDF

Similar Articles

ID Score Article
23425 Jafari, M; Botte, GG Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors(2024)Acs Omega, 9, 11
10672 Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1
8795 Mamani, A; Barreda, D; Sardella, MF; Bavio, M; Blanco, C; González, Z; Santamaría, R Fe-doped biomass-derived activated carbons as sustainable electrode materials in supercapacitors using different electrolytes(2024)
12159 Alcaraz, L; Adán-Más, A; Arévalo-Cid, P; Montemor, MD; López, FA RETRACTED: Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors (Retracted article. See vol. 11, 2023)(2020)
10788 Yan, B; Zheng, JJ; Feng, L; Zhang, Q; Zhang, CM; Ding, YC; Han, JQ; Jiang, SH; He, SJ Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials(2023)
14376 Brandao, ATSC; State, S; Costa, R; Potorac, P; Vázquez, JA; Valcarcel, J; Silva, AF; Anicai, L; Enachescu, M; Pereira, CM Renewable Carbon Materials as Electrodes for High-Performance Supercapacitors: From Marine Biowaste to High Specific Surface Area Porous Biocarbons(2023)Acs Omega, 8, 21
14790 Mohamed, MM; Shah, SS; Hakeem, AS; Javid, M; Aziz, MA; Yamani, ZH A Comprehensive Evaluation of Biomass-Derived Activated Carbon Materials for Electrochemical Applications in Zinc-Ion Hybrid Supercapacitors(2024)Acs Applied Energy Materials, 7, 17
28772 Kalyani, P; Banuprabha, TR; Velkannan, V Activated carbon from banyan prop root biomass and its application in pseudocapacitors: a strategy towards circular economy for energy(2021)Ionics, 27.0, 3
22301 Venna, S; Sharma, HB; Mandal, D; Reddy, HP; Chowdhury, S; Chandra, A; Dubey, BK Carbon material produced by hydrothermal carbonisation of food waste as an electrode material for supercapacitor application: A circular economy approach(2022)Waste Management & Research, 40.0, 10
26400 Pal, B; Yasin, A; Sunil, V; Sofer, Z; Yang, CC; Jose, R Enhancing the materials circularity: from laboratory waste to electrochemical capacitors(2022)
Scroll