Knowledge Agora



Similar Articles

Title Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure
ID_Doc 27022
Authors Dandamudi, KPR; Murdock, T; Lammers, PJ; Deng, SG; Fini, EH
Title Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure
Year 2021
Published
Abstract Conventional approaches of making biochars are typically through single sourcing of the feedstock. Here, we hypothesize that multi sourcing can be used to develop tailored functionalized biochar where select functional groups are inherently grafted onto the biochar surface. To test this hypothesis, we used hydrothermal coliquefaction to produce biochar from various blends of microalgae Cyanidioschyzon merolae (CM) and swine manure (SM). We further characterized each biochar's physicochemical and surface properties to qualify them for applications in construction and manufacturing. In the blended cases, 20-80 CM-SM had the highest biochar yield of 27.06 wt.%, while 80-20 CM-SM had the highest volatile matter, 32.2%. The crystallinity of the biochars ranged from 40-55%. The specific surface area was measured to be in the range of 1.53-5.86 m(2)/g and average pore size was in the range of 250-360.56 angstrom. The study results showed presence of functional groups such as alcohols, amides, free fatty acids/esters, cyclic- and straight-chain hydrocarbons on the surface of biochar, which could in turn promote biochar's application as a free-radical scavenger in construction and manufacturing. It should be noted that the use of biochar as a soil amendment is not enough to address the growing piles of biowaste. The outcomes of this study could enable development of non-conventional applications for functionalized biochar. Considering the urgent need for forest management and biowaste valorization, developing viable applications for biochar is significant not only for resource conservation, but also for forest management and environmental sustainability.
PDF

Similar Articles

ID Score Article
14431 Stylianou, M; Christou, A; Dalias, P; Polycarpou, P; Michael, C; Agapiou, A; Papanastasiou, P; Fatta-Kassinos, D Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds(2020)Journal Of The Energy Institute, 93, 5
2664 Costa, JAV; Zaparoli, M; Cassuriaga, APA; Cardias, BB; Vaz, BD; de Morais, MG; Moreira, JB Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy(2023)
21997 Emenike, EC; Iwuozor, KO; Ighalo, JO; Bamigbola, JO; Omonayin, EO; Ojo, HT; Adeleke, J; Adeniyi, AG Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel(2024)Biofuels-Uk, 15.0, 4
13509 Mayilswamy, N; Nighojkar, A; Edirisinghe, M; Sundaram, S; Kandasubramanian, B Sludge-derived biochar: Physicochemical characteristics for environmental remediation(2023)Applied Physics Reviews, 10, 3
6909 Scrinzi, D; Bona, D; Denaro, A; Silvestri, S; Andreottola, G; Fiori, L Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization(2022)
21044 Marzbali, MH; Hakeem, IG; Ngo, T; Balu, R; Jena, MK; Vuppaladadiyam, A; Sharma, A; Choudhury, NR; Batstone, DJ; Shah, KL A critical review on emerging industrial applications of chars from thermal treatment of biosolids(2024)
5492 Atinafu, DG; Yun, BY; Choi, JY; Yuan, XZ; Ok, YS; Kim, S Introduction of sustainable food waste-derived biochar for phase change material assembly to enhance energy storage capacity and enable circular economy(2023)
3639 Dhull, SB; Rose, PK; Rani, J; Goksen, G; Bains, A Food waste to hydrochar: A potential approach towards the Sustainable Development Goals, carbon neutrality, and circular economy(2024)
29119 He, MJ; Xu, ZB; Sun, YQ; Chan, PS; Lui, I; Tsang, DCW Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar(2021)
10366 Racek, J; Chorazy, T; Miino, MC; Vrsanská, M; Brtnicky, M; Mravcová, L; Kucerík, J; Hlavínek, P Biochar production from the pyrolysis of food waste: Characterization and implications for its use(2024)
Scroll