Knowledge Agora



Similar Articles

Title The Use of Steel Slags in Asphalt Pavements: A State-of-the-Art Review
ID_Doc 27059
Authors Pasetto, M; Baliello, A; Giacomello, G; Pasquini, E
Title The Use of Steel Slags in Asphalt Pavements: A State-of-the-Art Review
Year 2023
Published Sustainability, 15, 11
Abstract Steel slag is a by-product obtained through the separation of molten steel from impurities in steel-making furnaces. It can be produced by different types of furnaces (blast, basic oxygen, electric arc, ladle furnaces). The reuse of metallurgical slags in road pavements can pursue aims of recycling and environmental sustainability. Based on the extensive literature, the paper presents a state-of-the-art review concerning the use of slags in asphalt pavements, discussing the main controversial literature findings. Slag manufacturing processes, chemical, morphological, and physical characteristics, affect its contribution to the asphalt mixture, when it partially or fully substitutes natural aggregates. Legislative state-of-the-art environmental issues, weathering, and leaching aspects are also discussed. The main mechanical and durability properties of pavements containing different types of slags are analyzed based on laboratory and field studies. Generally, the higher mechanical properties of steel slag suggest that its inclusion in asphalt mixtures can provide high-performance pavement layers (excellent strength and stiffness, superior rutting and fatigue resistance, low moisture susceptibility). However, several research gaps still exist (e.g., mix design and seasoning procedure, bitumen-aggregate affinity, low-temperature behavior, brittleness); they are discussed to direct possible future study efforts to clarify specific technical aspects, such as, for example, the effect of slag morphology and physical properties on the final mix properties and the development of specific mix design guidelines.
PDF

Similar Articles

ID Score Article
20633 Moura, C; Nascimento, L; Loureiro, C; Rodrigues, M; Oliveira, J; Silva, H Viability of Using High Amounts of Steel Slag Aggregates to Improve the Circularity and Performance of Asphalt Mixtures(2022)Applied Sciences-Basel, 12, 1
26996 Díaz-Piloneta, M; Terrados-Cristos, M; Alvarez-Cabal, JV; Vergara-González, E Comprehensive Analysis of Steel Slag as Aggregate for Road Construction: Experimental Testing and Environmental Impact Assessment(2021)Materials, 14, 13
7490 Loureiro, CDA; Moura, CFN; Rodrigues, M; Martinho, FCG; Silva, HMRD; Oliveira, JRM Steel Slag and Recycled Concrete Aggregates: Replacing Quarries to Supply Sustainable Materials for the Asphalt Paving Industry(2022)Sustainability, 14, 9
29999 Piemonti, A; Conforti, A; Cominoli, L; Sorlini, S; Luciano, A; Plizzari, G Use of Iron and Steel Slags in Concrete: State of the Art and Future Perspectives(2021)Sustainability, 13.0, 2
12754 Revilla-Cuesta, V; Ortega-López, V; Skaf, M; Pasquini, E; Pasetto, M Preliminary Validation of Steel Slag-Aggregate Concrete for Rigid Pavements: A Full-Scale Study(2021)Infrastructures, 6.0, 5
7660 Terrones-Saeta, JM; Iglesias-Godino, FJ; Corpas-Iglesias, FA; Martínez-García, C Study of the Incorporation of Ladle Furnace Slag in the Manufacture of Cold In-Place Recycling with Bitumen Emulsion(2020)Materials, 13, 21
13292 Mica, NG; Rios, S; da Fonseca, AV; Fortunato, E Experimental Investigation to Analyze the Effect of Cementation on the Geomechanical Behavior of Steel Slag Mixtures(2024)Geotechnical Testing Journal, 47, 1
13971 Lagos-Varas, M; Movilla-Quesada, D; Raposeiras, AC; Castro-Fresno, D; Vega-Zamanillo, A; Cumian-Benavides, M Use of Hydrated Ladle Furnace Slag as a filler substitute in asphalt mastics: Rheological analysis of filler/bitumen interaction(2022)
13147 Sebbar, N; Lahmili, A; Bahi, L; Ouadif, L Treatment of clay soils with steel slag, in road engineering.(2020)
26388 Roberto, A; Mantovani, L; Romeo, E; Tebaldi, G; Montepara, A; Tribaudino, M Re-using Ladle Furnace Steel slags as filler in asphalt mixtures(2022)
Scroll