Knowledge Agora



Similar Articles

Title Multicycling of Epoxy Thermoset Through a Two-Step Strategy of Alcoholysis and Hydrolysis using a Self-Separating Catalysis System
ID_Doc 27066
Authors Zhao, X; Liu, XH; Feng, K; An, WL; Tian, F; Du, RC; Xu, SM; LiChen; Wu, G; Wang, YZ
Title Multicycling of Epoxy Thermoset Through a Two-Step Strategy of Alcoholysis and Hydrolysis using a Self-Separating Catalysis System
Year 2022
Published Chemsuschem, 15.0, 3
Abstract Plastic has now become a contradiction between civilization and pollution that human society has to resolve. The recycling of thermosetting plastics in waste plastics is a huge challenge since they are difficult to remold like thermoplastic plastics due to their high crosslinking density. Here, a new strategy was developed to achieve multicycling of anhydride-cured epoxy thermosets. The process consisted of mild and high-efficiency alcoholysis catalyzed by potassium phosphate/low-boiling alcohol system, and subsequent fast hydrolysis to obtain degradation products rich of carboxyl groups. The degradation products were reused as curing agent to prepare new anhydride-cured epoxy thermosets without sacrifice of high strength and stability. Moreover, the new epoxy thermosets could still be repeatedly recycled using the same protocol. The insolubility of potassium phosphate in ethanol at room temperature made the separation and reuse of the catalyst more convenient. The use of low-boiling alcohol not only allowed high-efficiency degradation but also enabled easy separation from the degradation products. The excellent degradation performance was attributed to the improved swelling of the thermoset and the increased solubility of potassium phosphate induced by small amounts of water in the alcohol. This research provides a recycling method that can reintegrate thermoset waste plastics into remodeling ones under the background of circular economy.
PDF

Similar Articles

ID Score Article
24349 Parida, D; Aerts, A; Vanbroekhoven, K; Van Dael, M; Mitta, H; Li, LF; Eevers, W; Van Geem, KM; Feghali, E; Elst, K Monomer recycling of polyethylene terephthalate, polycarbonate and polyethers: Scalable processes to achieve high carbon circularity(2024)
23856 Jeya, G; Dhanalakshmi, R; Anbarasu, M; Vinitha, V; Sivamurugan, V A short review on latest developments in catalytic depolymerization of Poly (ethylene terephathalate) wastes(2022)Journal Of The Indian Chemical Society, 99, 1
19569 Cao, F; Wang, LY; Zheng, RR; Guo, LY; Chen, YM; Qian, X Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products(2022)Rsc Advances, 12.0, 49
22086 Conroy, S; Zhang, XL Theoretical insights into chemical recycling of polyethylene terephthalate (PET)(2024)
13704 Javed, S; Vogt, D Development of Eco-Friendly and Sustainable PET Glycolysis Using Sodium Alkoxides as Catalysts(2023)Acs Sustainable Chemistry & Engineering, 11, 31
28305 Enache, AC; Grecu, I; Samoila, P Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles(2024)Materials, 17.0, 12
20248 Manarin, E; Boumezgane, O; Giannino, A; De Fabritiis, V; Griffini, G; Turri, S Towards a zero-waste chemcycling of thermoset polymer composites: Catalyst assisted mild solvolysis for clean carbon fiber liberation and circular coating development(2024)
19969 Damayanti; Wu, HS Strategic Possibility Routes of Recycled PET(2021)Polymers, 13.0, 9
17243 Kristensen, SK; Ahrens, A; Donslund, BS; Skrydstrup, T Perspective on the Development of Monomer Recovery Technologies from Plastics Designed to Last(2024)Acs Organic & Inorganic Au, 4, 4
10292 Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review(2021)Energy & Fuels, 35, 16
Scroll