Knowledge Agora



Similar Articles

Title Techno-economic assessment and comparison of different plastic recycling pathways: A German case study
ID_Doc 27077
Authors Volk, R; Stallkamp, C; Steins, JJ; Yogish, SP; Muller, RC; Stapf, D; Schultmann, F
Title Techno-economic assessment and comparison of different plastic recycling pathways: A German case study
Year 2021
Published Journal Of Industrial Ecology, 25.0, 5
Abstract Greenhouse gas (GHG) emissions need to be reduced to limit global warming. Plastic production requires carbon raw materials and energy that are associated today with predominantly fossil raw materials and fossil GHG emissions. Worldwide, the plastic demand is increasing annually by 4%. Recycling technologies can help save or reduce GHG emissions, but they require comparative assessment. Thus, we assess mechanical recycling, chemical recycling by means of pyrolysis and a consecutive, complementary combination of both concerning Global Warming Potential (GWP) [CO(2)e], Cumulative Energy Demand (CED) [MJ/kg], carbon efficiency [%], and product costs [euro] in a process-oriented approach and within defined system boundaries. The developed techno-economic and environmental assessment approach is demonstrated in a case study on recycling of separately collected mixed lightweight packaging (LWP) waste in Germany. In the recycling paths, the bulk materials polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and polystyrene (PS) are assessed. The combined mechanical and chemical recycling (pyrolysis) of LWP waste shows considerable saving potentials in GWP (0.48 kg CO(2)e/kg input), CED (13.32 MJ/kg input), and cost (0.14 euro/kg input) and a 16% higher carbon efficiency compared to the baseline scenario with state-of-the-art mechanical recycling in Germany. This leads to a combined recycling potential between 2.5 and 2.8 million metric tons/year that could keep between 0.8 and 2 million metric tons/year additionally in the (circular) economy instead of incinerating them. This would be sufficient to reach both EU and German recycling rate targets (EC 2018). This article met the requirements for a gold-silver JIE data openness badge described at http://jie.click/badges.
PDF https://publikationen.bibliothek.kit.edu/1000131910/111713819

Similar Articles

ID Score Article
22229 Faraca, G; Martinez-Sanchez, V; Astrup, TF Environmental life cycle cost assessment: Recycling of hard plastic waste collected at Danish recycling centres(2019)
3734 Meys, R; Frick, F; Westhues, S; Sternberg, A; Klankermayer, J; Bardow, A Towards a circular economy for plastic packaging wastes - the environmental potential of chemical recycling(2020)
18466 Klotz, M; Haupt, M; Hellweg, S Potentials and limits of mechanical plastic recycling(2023)Journal Of Industrial Ecology, 27.0, 4
17052 Jeswani, H; Krüger, C; Russ, M; Horlacher, M; Antony, F; Hann, S; Azapagic, A Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery(2021)
24907 Antonopoulos, I; Faraca, G; Tonini, D Recycling of post-consumer plastic packaging waste in the EU: Recovery rates, material flows, and barriers(2021)
6044 Baran, B Plastic waste as a challenge for sustainable development and circularity in the European Union(2020)Ekonomia I Prawo-Economics And Law, 19, 1
18160 Lase, IS; Tonini, D; Caro, D; Albizzati, PF; Cristobal, J; Roosen, M; Kusenberg, M; Ragaert, K; Van Geem, KM; Dewulf, J; De Meester, S How much can chemical recycling contribute to plastic waste recycling in Europe? An assessment using material flow analysis modeling(2023)
28934 Van Eygen, E; Laner, D; Fellner, J Circular economy of plastic packaging: Current practice and perspectives in Austria(2018)
24299 Nordahl, SL; Baral, NR; Helms, BA; Scown, CD Complementary roles for mechanical and solvent- based recycling in low- carbon, circular polypropylene(2023)Proceedings Of The National Academy Of Sciences Of The United States Of America, 120, 46
20623 Stallkamp, C; Hennig, M; Volk, R; Richter, F; Bergfeldt, B; Tavakkol, S; Schultmann, F; Stapf, D Economic and environmental assessment of automotive plastic waste end-of-life options: Energy recovery versus chemical recycling(2023)Journal Of Industrial Ecology, 27, 5
Scroll