Knowledge Agora



Similar Articles

Title The global warming potential and the material utility of PET and bio-based PEF bottles over multiple recycling trips
ID_Doc 27092
Authors Stegmann, P; Gerritse, T; Shen, L; Londo, M; Puente, A; Junginger, M
Title The global warming potential and the material utility of PET and bio-based PEF bottles over multiple recycling trips
Year 2023
Published
Abstract Biomass use and recycling are among the few options to reduce the greenhouse gas (GHG) emissions of the growing plastics sector. The bio-based plastic polyethylene furanoate (PEF) is a promising alternative to poly-ethylene terephthalate (PET), in particular for small bottle applications. For the first time, we assessed the life cycle global warming potential (GWP) for 250 mL PET and PEF bottles over multiple mechanical (MR) and chemical (CR) recycling trips in the Netherlands. We found that bio-based PEF would offer 50-74% lower life cycle GHG emission after one recycling trip compared to PET, depending on the waste management case. Our results also show that deposit-based recycling systems significantly reduce the cumulative cradle-to-grave net GHG emissions for both bottle types, especially when multiple recycling trips are applied. We propose com-plementary material utility (MU) indicators to reveal synergies and trade-offs between circularity and GWP: While deposit-based CR shows the best performance in terms of MU, it falls behind deposit-based MR when it comes to net GHG emissions due to the energy intensity of CR. Hence, combining mechanical and chemical recycling could contribute to achieving the goals of the circular economy and climate change mitigation alike.
PDF

Similar Articles

ID Score Article
4364 Ghosh, T; Avery, G; Bhatt, A; Uekert, T; Walzberg, J; Carpenter, A Towards a circular economy for PET bottle resin using a system dynamics inspired material flow model(2023)
15034 Chairat, S; Gheewala, SH Life cycle assessment and circularity of polyethylene terephthalate bottles via closed and open loop recycling(2023)
6362 Ma, ZJ; Ryberg, MW; Wang, P; Tang, LB; Chen, WQ China's Import of Waste PET Bottles Benefited Global Plastic Circularity and Environmental Performance(2020)Acs Sustainable Chemistry & Engineering, 8, 45
27077 Volk, R; Stallkamp, C; Steins, JJ; Yogish, SP; Muller, RC; Stapf, D; Schultmann, F Techno-economic assessment and comparison of different plastic recycling pathways: A German case study(2021)Journal Of Industrial Ecology, 25.0, 5
3604 Ghosh, T; Uekert, T; Walzberg, J; Carpenter, AC Comparing Parallel Plastic-to-X Pathways and Their Role in a Circular Economy for PET Bottles(2023)
3734 Meys, R; Frick, F; Westhues, S; Sternberg, A; Klankermayer, J; Bardow, A Towards a circular economy for plastic packaging wastes - the environmental potential of chemical recycling(2020)
24969 Roux, M; Varrone, C Assessing the Economic Viability of the Plastic Biorefinery Concept and Its Contribution to a More Circular Plastic Sector(2021)Polymers, 13, 22
4190 Gracida-Alvarez, UR; Xu, H; Benavides, PT; Wang, MC; Hawkins, TR Circular Economy Sustainability Analysis Framework for Plastics: Application for Poly(ethylene Terephthalate) (PET)(2023)Acs Sustainable Chemistry & Engineering, 11, 2
18564 Helmes, RJK; Goglio, P; Salomoni, S; van Es, DS; Gursel, IV; Aramyan, L Environmental Impacts of End-of-Life Options of Biobased and Fossil-Based Polyethylene Terephthalate and High-Density Polyethylene Packaging(2022)Sustainability, 14.0, 18
3417 Lee, C; Jang, YC; Choi, K; Kim, B; Song, H; Kwon, Y Recycling, Material Flow, and Recycled Content Demands of Polyethylene Terephthalate (PET) Bottles towards a Circular Economy in Korea(2024)Environments, 11, 2
Scroll