Knowledge Agora



Similar Articles

Title Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts
ID_Doc 27341
Authors Díaz-Ramírez, MC; Ferreira, VJ; García-Armingol, T; López-Sabirón, AM; Ferreira, G
Title Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts
Year 2020
Published Sustainability, 12.0, 17
Abstract A promising route to attain a reliable impact reduction of supply chain materials is based on considering circular economy approaches, such as material recycling strategies. This work aimed to evaluate potential benefits of recycling scenarios for steel, copper, aluminium and plastic materials to the battery manufacturing stage. Focused on this aim, the life cycle assessment (LCA) and the environmental externalities methodologies were applied to two battery study cases: lithium manganese oxide and vanadium redox flow (VRFB) batteries, based on a cradle-to-gate LCA approach. In general, the results provided an insight into the raw material handling route. Environmental impacts were diminished by more than 20% in almost all the indicators, due to the lower consumption of virgin materials related to the implemented recyclability route. Particularly, VRFB exhibited better recyclability ratio than the Li-ion battery. For the former, the key components were the periphery ones attaining around 70% of impact reduction by recycling steel. Components of the power subsystem were also relevant, reaching around 40% of environmental impact reduction by recycling plastic. The results also foresaw opportunities for membranes, key components of VRFB materials. Based on findings, recycling strategies may improve the total circularity performance and economic viability of the studied systems.
PDF https://www.mdpi.com/2071-1050/12/17/6840/pdf

Similar Articles

ID Score Article
10304 Wang, QS; Liu, W; Yuan, XL; Tang, HR; Tang, YZ; Wang, MS; Zuo, J; Song, ZL; Sun, J Environmental impact analysis and process optimization of batteries based on life cycle assessment(2018)
28821 Ferrara, C; Ruffo, R; Quartarone, E; Mustarelli, P Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling(2021)Advanced Energy And Sustainability Research, 2.0, 10
22778 Doose, S; Mayer, JK; Michalowski, P; Kwade, A Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations(2021)Metals, 11.0, 2
15154 Luo, XL; Ding, N; Yang, JX; Lu, B; Ma, J Potential environmental benefits assessment of recycling based on multi-LCA and SFA(2024)
16202 Kurz, L; Forster, S; Wörner, R; Reichert, F Environmental Impacts of Specific Recyclates in European Battery Regulatory-Compliant Lithium-Ion Cell Manufacturing(2023)Sustainability, 15, 1
22575 Díaz-Ramírez, MC; Ferreira, VJ; García-Armingol, T; López-Sabirón, AM; Ferreira, G Environmental Assessment of Electrochemical Energy Storage Device Manufacturing to Identify Drivers for Attaining Goals of Sustainable Materials 4.0(2020)Sustainability, 12.0, 1
7361 Yang, Y; Okonkwo, EG; Huang, GY; Xu, SM; Sun, W; He, YH On the sustainability of lithium ion battery industry-A review and perspective(2021)
22876 Iturrondobeitia, M; Vallejo, C; Berroci, M; Akizu-Gardoki, O; Minguez, R; Lizundia, E Environmental Impact Assessment of LiNi1/3M1/3C1/3O2 Hydrometallurgical Cathode Recycling from Spent Lithium-Ion Batteries(2022)Acs Sustainable Chemistry & Engineering, 10.0, 30
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
26813 Zhou, H; Li, W; Poulet, T; Basarir, H; Karrech, A Life cycle assessment of recycling lithium-ion battery related mineral processing by-products: A review(2024)
Scroll