Knowledge Agora



Similar Articles

Title Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach
ID_Doc 27397
Authors Narisetty, V; Nagarajan, S; Gadkari, S; Ranade, V; Zhang, JX; Patchigolla, K; Bhatnagar, A; Awasthi, MK; Pandey, A; Kumar, V
Title Process optimization for recycling of bread waste into bioethanol and biomethane: A circular economy approach
Year 2022
Published
Abstract Bread is the second most wasted food in the UK with annual wastage of 292,000 tons. In the present work, bread waste (BW) was utilized for fermentative production of ethanol by Saccharomyces cerevisiae KL17. Acidic and enzymatic saccharification of BW was carried out resulting in the highest glucose release of 75 and 97.9 g/L which is 73.5 and 95.9% of theoretical yield, respectively. The obtained sugars were fermented into ethanol initially in shake flask followed by scale up in bioreactor in batch and fed-batch mode. In the fed-batch mode of cultivation, the maximum ethanol titers of 111.3, 106.9, and 114.9 g/L with conversion yield and productivity of 0.48, 0.47, and 0.49 g/g, and 3.1, 3.0, and 3.2 g/L.h was achieved from pure glucose, glucose-rich acidic and enzymatic hydrolysates, respectively. Further to improve the process economics, the solid residues after acidic (ABW) and enzymatic (EBW) hydrolysis of BW along with respective fermentation residues (FR) obtained after the ethanol production were pooled and subjected to anaerobic digestion. The solid residue from ABW + FR, and EBW + FR yielded a biochemical methanation potential (BMP) of 345 and 379 mL CH4/g VS, respectively. Life cycle assessment of the process showed that the total emissions for ethanol production from BW were comparable to the emissions from more established feedstocks such as sugarcane and maize grain and much lower when compared to wheat and sweet potato. The current work demonstrates BW as promising feedstock for sustainable biofuel production with the aid of circular biorefining strategy. To the authors knowledge, this is the first time, such a sequential system has been investigated with BW for ethanol and biomethane production. Further work will be aimed at ethanol production at pilot scale and BMP will be accessed in a commercial anaerobic digester.
PDF https://doi.org/10.1016/j.enconman.2022.115784

Similar Articles

ID Score Article
23315 Fagundes, VD; Freitag, JF; Simon, V; Colla, LM Enzymatic hydrolysis of food waste for bioethanol production(2024)
24932 Chatterjee, S; Mohan, SV Simultaneous production of green hydrogen and bioethanol from segregated sugarcane bagasse hydrolysate streams with circular biorefinery design(2021)
5845 Sánchez, M; Laca, A; Laca, A; Díaz, M Towards food circular economy: hydrothermal treatment of mixed vegetable and fruit wastes to obtain fermentable sugars and bioactive compounds(2023)Environmental Science And Pollution Research, 30, 2
15113 Carrillo-Nieves, D; Saldarriaga-Hernandez, S; Gutiérrez-Soto, G; Rostro-Alanis, M; Hernández-Luna, C; Alvarez, AJ; Iqbal, HMN; Parra-Saldívar, R Biotransformation of agro-industrial waste to produce lignocellulolytic enzymes and bioethanol with a zero waste(2022)Biomass Conversion And Biorefinery, 12, 2
13734 Gadkari, S; Kumar, D; Qin, ZH; Lin, CSK; Kumar, V Life cycle analysis of fermentative production of succinic acid from bread waste(2021)
20081 Rodrigues, DM; da Silva, MF; de Mélo, AHF; Carvalho, PH; Baudel, HM; Goldbeck, R Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives(2024)
22339 Carsanba, E; Agirman, B; Papanikolaou, S; Fickers, P; Erten, H Valorisation of Waste Bread for the Production of Yeast Biomass by Yarrowia lipolytica Bioreactor Fermentation(2023)Fermentation-Basel, 9.0, 7
8801 Varsha, K; Katakojwala, R; Mohan, SV Biorefining sugarcane tops for cellulose, nano-silica, and biogas production(2023)
18761 Molina-Peñate, E; Artola, A; Sánchez, A Exploring biorefinery alternatives for biowaste valorization: a techno-economic assessment of enzymatic hydrolysis coupled with anaerobic digestion or solid-state fermentation for high-value bioproducts(2024)Bioengineered, 15.0, 1
13249 Rudnyckyj, S; Chaturvedi, T; Thomsen, MH Microbial biomass production from enzymatically saccharified organic municipal waste and present microbial inhibitors(2024)
Scroll