Knowledge Agora



Similar Articles

Title Enzymatic textile recycling - best practices and outlook
ID_Doc 27554
Authors Piribauer, B; Bartl, A; Ipsmiller, W
Title Enzymatic textile recycling - best practices and outlook
Year 2021
Published Waste Management & Research, 39.0, 10
Abstract Recently, textiles and their end-of-life management have become the focus of public and political attention. In the European Union the revised waste framework directive defines textiles as municipal waste and stipulates their separate collection by 2025. In the context of these developments, this paper summarises briefly the current state-of-the-art in textile recycling. It is evident that recycling methods are not yet fully developed. This is especially the case with multi-material textiles, which are composed of two or more polymers that are incompatible for recycling. In the practical part of the communication, results are presented which show that enzymatic hydrolysis is a suitable process for recycling textiles made of cotton and polyester. After a complete removal of cotton, the remaining pure polyester fibres undergo a re-granulation and post-condensation step. The so obtained recycled polyester is fed back into the textile processing chain and finally towels are obtained. The main steering parameters of the enzymatic hydrolysis process are described. The study proves that solutions in accordance with the Circular Economy in the textile sector are available but an industrial implementation has not yet been realised.
PDF

Similar Articles

ID Score Article
7076 Damayanti, D; Wulandari, LA; Bagaskoro, A; Rianjanu, A; Wu, HS Possibility Routes for Textile Recycling Technology(2021)Polymers, 13, 21
20667 Piribauer, B; Bartl, A Textile recycling processes, state of the art and current developments: A mini review(2019)Waste Management & Research, 37, 2
20771 Piribauer, B; Jenull-Halver, U; Quartinello, F; Ipsmiller, W; Laminger, T; Koch, D; Bartl, A Tex2Mat - Next Level Textile Recycling With Biocatalysts(2020)
10149 Navone, L; Moffitt, K; Hansen, KA; Blinco, J; Payne, A; Speight, R Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends(2020)
3675 Ribul, M; Lanot, A; Pisapia, CT; Purnell, P; McQueen-Mason, SJ; Baurley, S Mechanical, chemical, biological: Moving towards closed-loop bio-based recycling in a circular economy of sustainable textiles(2021)
16600 Subramanian, K; Sarkar, MK; Wang, HM; Qin, ZH; Chopra, SS; Jin, MS; Kumar, V; Chen, C; Tsang, CW; Lin, CSK An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach - research trends, opportunities and challenges(2022)Critical Reviews In Environmental Science And Technology, 52, 21
5530 Choudhury, K; Tsianou, M; Alexandridis, P Recycling of Blended Fabrics for a Circular Economy of Textiles: Separation of Cotton, Polyester, and Elastane Fibers(2024)Sustainability, 16, 14
6312 Subramanian, K; Chopra, SS; Cakin, E; Li, XT; Lin, CSK Environmental life cycle assessment of textile bio-recycling - valorizing cotton-polyester textile waste to pet fiber and glucose syrup(2020)
68836 Sanchis-Sebastiá, M; Ruuth, E; Stigsson, L; Galbe, M; Wallberg, O Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis(2021)
8534 Costa, C; Viana, A; Silva, C; Marques, EF; Azoia, NG Recycling of textile wastes, by acid hydrolysis, into new cellulosic raw materials(2022)
Scroll