Knowledge Agora



Similar Articles

Title Enzymatic hydrolysis of single-use bioplastic items by improved recombinant yeast strains
ID_Doc 27686
Authors Myburgh, MW; Zyl, WHV; Modesti, M; Viljoen-Bloom, M; Favaro, L
Title Enzymatic hydrolysis of single-use bioplastic items by improved recombinant yeast strains
Year 2023
Published
Abstract Single-use bioplastic items pose new challenges for a circular plastics economy as they require different processing than petroleum-based plastics items. Microbial and enzymatic recycling approaches could address some of the pitfalls created by the influx of bioplastic waste. In this study, the recombinant expression of a cutinaselike-enzyme (CLE1) was improved in the yeast Saccharomyces cerevisiae to efficiently hydrolyse several commercial single-use bioplastic items constituting blends of poly(lactic acid), poly(1,4-butylene adipate-co-terephthalate), poly(butylene succinate) and mineral fillers. The hydrolysis process was optimised in controlled bioreactor configurations to deliver substantial monomer concentrations and, ultimately, 29 to 78% weight loss. Product inhibition studies and molecular docking provided insights into potential bottlenecks of the enzymatic hydrolysis process, while FT-IR analysis showed the preferential breakdown of specific polymers in blended commercial bioplastic items. This work constitutes a step towards implementing enzymatic hydrolysis as a circular economy approach for the valorisation of end-of-life single-use bioplastic items.
PDF https://doi.org/10.1016/j.biortech.2023.129908

Similar Articles

ID Score Article
22998 Serrano-Aguirre, L; Prieto, MA Can bioplastics always offer a truly sustainable alternative to fossil-based plastics?(2024)Microbial Biotechnology, 17.0, 4
27431 Tamoor, M; Samak, NA; Jia, YP; Mushtaq, MU; Sher, H; Bibi, M; Xing, JM Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution(2021)
20128 Zimmermann, W Biocatalytic recycling of polyethylene terephthalate plastic(2020)Philosophical Transactions Of The Royal Society A-Mathematical Physical And Engineering Sciences, 378, 2176
8221 Shi, LX; Zhu, LL Recent Advances and Challenges in Enzymatic Depolymerization and Recycling of PET Wastes(2024)Chembiochem, 25.0, 2
10353 Lens-Pechakova, LS Recent studies on enzyme-catalysed recycling and biodegradation of synthetic polymers(2021)Advanced Industrial And Engineering Polymer Research, 4, 3
9299 Martín-González, D; Tagarro, CD; De Lucas, A; Bordel, S; Santos-Beneit, F Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review(2024)International Journal Of Molecular Sciences, 25.0, 10
9699 Kolitha, BS; Jayasekara, SK; Tannenbaum, R; Jasiuk, IM; Jayakody, LN Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing(2023)Journal Of Industrial Microbiology & Biotechnology, 50.0, 1
8605 Peng, Y; Prabhu, A; Rinke, C Facing our plastic waste crisis: biorecycling as a promising solution(2023)Microbiology Australia, 44.0, 1
7554 Tournier, V; Duquesne, S; Guillamot, F; Cramail, H; Andre, I; Taton, D; Marty, A Enzymes? Power for Plastics Degradation(2023)Chemical Reviews, 123, 9
6877 Lee, S; Lee, YR; Kim, SJ; Lee, JS; Min, K Recent advances and challenges in the biotechnological upcycling of plastic wastes for constructing a circular bioeconomy(2023)
Scroll