Knowledge Agora



Similar Articles

Title Removal of ammonium from wastewater by zeolite synthetized from volcanic ash: Batch and column tests
ID_Doc 27938
Authors Gagliano, E; Sgroi, M; Falciglia, PP; Belviso, C; Cavalcante, F; Lettino, A; Vagliasindi, FGA; Roccaro, P
Title Removal of ammonium from wastewater by zeolite synthetized from volcanic ash: Batch and column tests
Year 2022
Published Journal Of Environmental Chemical Engineering, 10.0, 3
Abstract Volcanic ash (VA) fallout during explosive activity of Mt. Etna (Sicily, Italy) negatively impacts the economy of local municipalities due to the management and disposal costs. In order to investigate an alternative use of VA in the civil and environmental engineering field, zeolites synthetized from VA were employed to remove ammonium from various aqueous solutions. Specifically, batch adsorption experiments were conducted to assess the effect of different synthesis conditions (e.g., incubation temperature, use of seawater or distilled water, VA particle size) on the adsorption capacity of ammonium on the produced zeolites. Adsorption isotherms were well fitted by Freundlich model and showed that zeolite synthetized at 70 degrees C using distilled water (C1H70) exhibited the highest adsorption capacity (similar to 18.4 mg g(-1)). The observed ammonium adsorption capacity is higher or comparable to other natural or synthetized zeolites reported in literature. C1H70 was used in column experiments under different operational conditions, including initial ammonium concentration (10 and 40 mg L-1), empty bed contact time (EBCT, 4 and 8 min) and water quality (deionized water vs. secondary effluent wastewater). The Dose-Response model showed the best fitting in describing the breakthrough curves. Obtained results showed a good removal of ammonium even though the adsorption capacity decreased in presence of competing ions (e.g., calcium) and when tap water or wastewater was used. Moreover, the adsorption capacity of C1H70 regenerated through NaCl solution was found similar to the fresh C1H70. However, the regenerated zeolite was characterized by a slower mass transfer process. Overall, synthetized zeolites from VA can be used to remove ammonium from wastewater, reducing both the landfilling of VA and the extraction of natural zeolite under the circular economy perspective.
PDF

Similar Articles

ID Score Article
26187 Muscarella, SM; Laudicina, VA; Badalucco, L; Conte, P; Mannina, G Ammonium Recovery from Synthetic Wastewaters by Using Zeolitic Mixtures: A Desorption Batch-Study(2023)Water, 15, 19
10507 Mokrzycki, J; Franus, W; Panek, R; Sobczyk, M; Rusiniak, P; Szerement, J; Jarosz, R; Marcinska-Mazur, L; Bajda, T; Mierzwa-Hersztek, M Zeolite Composite Materials from Fly Ash: An Assessment of Physicochemical and Adsorption Properties(2023)Materials, 16, 6
21569 Muscarella, SM; Laudicina, VA; Di Trapani, D; Mannina, G Recovering ammonium from real treated wastewater by zeolite packed columns: The effect of flow rate and particle diameter(2024)
14572 Mitrogiannis, D; Psychogiou, M; Manthos, G; Tsigkou, K; Kornaros, M; Koukouzas, N; Michailidis, D; Palles, D; Kamitsos, EI; Mavrogonatos, C; Baziotis, I Phosphorus and potassium recovery from anaerobically digested olive mill wastewater using modified zeolite, fly ash and zeolitic fly ash: a comparative study(2022)Journal Of Chemical Technology And Biotechnology, 97, 7
19733 Jadaa, W Wastewater Treatment Utilizing Industrial Waste Fly Ash as a Low-Cost Adsorbent for Heavy Metal Removal: Literature Review(2024)Clean Technologies, 6.0, 1
21292 Pinelli, D; Foglia, A; Fatone, F; Papa, E; Maggetti, C; Bovina, S; Frascari, D Ammonium recovery from municipal wastewater by ion exchange: Development and application of a procedure for sorbent selection(2022)Journal Of Environmental Chemical Engineering, 10.0, 6
9323 Panek, R; Madej, J; Bandura, L; Slowik, G Recycling of Waste Solution after Hydrothermal Conversion of Fly Ash on a Semi-Technical Scale for Zeolite Synthesis(2021)Materials, 14.0, 6
14127 Lobo-Recio, MA; Rodrigues, C; Jeremias, TC; Lapolli, FR; Padilla, I; López-Delgado, A Highly efficient removal of aluminum, iron, and manganese ions using Linde type-A zeolite obtained from hazardous waste(2021)
12913 Medri, V; Papa, E; Landi, E; Maggetti, C; Pinelli, D; Frascari, D Ammonium removal and recovery from municipal wastewater by ion exchange using a metakaolin K-based geopolymer(2022)
10644 Ugwu, EI; Othmani, A; Nnaji, CC A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment(2022)International Journal Of Environmental Science And Technology, 19, 8
Scroll