Knowledge Agora



Similar Articles

Title Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar
ID_Doc 27990
Authors Trabelsi, AB; Zaafouri, K; Friaa, A; Abidi, S; Naoui, S; Jamaaoui, F
Title Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar
Year 2021
Published Environmental Science And Pollution Research, 28.0, 8
Abstract In this study, municipal sewage sludge (MSS) is converted simultaneously into renewable biofuels (bio-oil, syngas) and high value-added products (biochar) using a fixed bed pyrolyzer. This work examines the combined effect of two factors: final pyrolysis temperature (degrees C) and MSS moisture content (%) on pyrogenic product yields and characteristics. A centered composite experimental design (CCD) is established for pyrolysis process optimization by adopting the response surface methodology (RSM). The statistical results indicate that the optimal conditions considering all studied factors and responses are 550 degrees C as final pyrolysis temperature and 15% as MSS moisture content. In these optimal conditions, biofuels yield is around 48 wt%, whereas biochar yield is about 52 wt%. The pyrolysis products characterizations reveal that (i) pyrolytic oil has a complex molecular composition rich with n-alkanes, n-alkenes, carboxylic acids, and aromatic compounds; (ii) bio-oil presents a high-energy content (high heating value HHV around 30.6 MJ/kg); (iii) syngas mixture has a good calorific value (HHV up to 8 MJ/kg), which could be used as renewable energy vector or for pyrolysis reactor heating; and (iv) biochar residue has good aliphatic and oxygenated group contents favoring its application as biofertilizer. These findings suggest that MSS conversion into biofuels and biochar is an appropriate approach for MSS treatment. MSS-to-energy could be proposed as an element for circular economy concept due to its effectiveness in producing high value-added and sustainable products and reducing environmental problems linked to MSS disposal.
PDF

Similar Articles

ID Score Article
10564 Biney, M; Gusiatin, MZ Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions(2024)Materials, 17, 14
14060 Menezes, LNB; Silveira, EA; Mazzoni, JVS; Evaristo, RBW; Rodrigues, JS; Lamas, GC; Suarez, PAZ; Ghesti, GF Alternative valuation pathways for primary, secondary, and tertiary sewage sludge: biochar and bio-oil production for sustainable energy(2022)
13381 Huang, C; Mohamed, BA; Li, LY Comparative life-cycle assessment of pyrolysis processes for producing bio-oil, biochar, and activated carbon from sewage sludge(2022)
10846 Sun, BZ; Huo, JB; Liu, HP; Che, DY; Guo, S Elucidation of synergistic effects in straw/sludge co-pyrolysis through gaseous product monitoring and biochar analysis(2023)
8045 Racek, J; Sevcik, J; Chorazy, T; Kucerik, J; Hlavinek, P Biochar - Recovery Material from Pyrolysis of Sewage Sludge: A Review(2020)Waste And Biomass Valorization, 11, 7
2917 Khan, R; Shukla, S; Kumar, M; Zuorro, A; Pandey, A Sewage sludge derived biochar and its potential for sustainable environment in circular economy: Advantages and challenges(2023)
28847 Bolognesi, S; Bernardi, G; Callegari, A; Dondi, D; Capodaglio, AG Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy(2021)Biomass Conversion And Biorefinery, 11.0, 2
12492 Özdemir, A; Özkan, A; Günkaya, Z; Banar, M Co-pyrolysis of municipal solid waste and municipal sewage sludge and characterization of liquid product(2022)Pamukkale University Journal Of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisi, 28.0, 6
30025 Gopinath, A; Divyapriya, G; Srivastava, V; Laiju, AR; Nidheesh, P; Kumar, MS Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment(2021)
20478 Xu, F; Xia, XG; Luo, J; Luo, DL; Xu, JP Maximized energy recovery by catalytic co-pyrolysis of dewatered sewage sludge and polystyrene to contribute in bio-circular economy: Synergistic compositional analysis of bio-oil and syngas through artificial neural networking(2024)
Scroll