Knowledge Agora



Similar Articles

Title Human urine electrolysis for simultaneous green hydrogen and liquid fertilizer production for a circular economy: A proof of concept
ID_Doc 28259
Authors Im, K; Park, M; Kabir, MM; Sohn, W; Choo, Y; Shon, HK; Nam, SY
Title Human urine electrolysis for simultaneous green hydrogen and liquid fertilizer production for a circular economy: A proof of concept
Year 2024
Published
Abstract This study explores a novel process for hydrogen production and urine concentration using water electrolysis, employing a hydrophobic membrane and hydrogel electrolyte. The process utilizes a hydrophobic membrane to provide pure water from human urine, while simultaneously producing hydrogen through electrolysis, and concentrating urine for liquid fertilizer production. A suitable hydrogel electrolyte was developed, with polyvinyl alcohol (PVA)-based hydrogels and varying potassium hydroxide (KOH) concentration, showing efficient ion conductivity. The PVA-KOH 30 wt % hydrogel incorporating melamine exhibited promising performance in cell testing, achieving a current density of 204.35 mA/cm2 at 2 V. Long-term electrolysis tests indicated sustained efficiency, although a decline in current density during 96 h was attributed to hydrophobic membrane fouling. Nonetheless, the hydrogel electrolyte demonstrated minimal fouling, successfully concentrating the urine about 5 times. This concentrated urine serves as liquid fertilizer, while the produced hydrogen acts as an energy source, and the oxygen can be recycled for use in a membrane bioreactor (MBR), establishing a sustainable energy cycle system.
PDF

Similar Articles

ID Score Article
3811 Martínez-Castrejón, M; López-Díaz, JA; Solorza-Feria, O; Talavera-Mendoza, O; Rodríguez-Herrera, AL; Alcaraz-Morales, O; Hernández-Flores, G Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective(2022)Micromachines, 13, 12
12807 Freguia, S; Logrieco, ME; Monetti, J; Ledezma, P; Virdis, B; Tsujimura, S Self-Powered Bioelectrochemical Nutrient Recovery for Fertilizer Generation from Human Urine(2019)Sustainability, 11.0, 19
Scroll