Knowledge Agora



Similar Articles

Title The Circular Economy Paradigm: Modification of Bagasse-Derived Lignin as a Precursor to Sustainable Hydrogel Production
ID_Doc 28407
Authors Akhramez, S; Fatimi, A; Okoro, OV; Hajiabbas, M; Boussetta, A; Moubarik, A; Hafid, A; Khouili, M; Siminska-Stanny, J; Brigode, C; Shavandi, A
Title The Circular Economy Paradigm: Modification of Bagasse-Derived Lignin as a Precursor to Sustainable Hydrogel Production
Year 2022
Published Sustainability, 14.0, 14
Abstract There have been many efforts to valorise lignin to produce bio-based chemicals and advanced materials. In this study, alkaline delignification was initially employed to recover lignin from the rind, pulp, and whole bagasse fractions of Moroccan sugarcane. The lignin fractions were subsequently modified via silanization and acetylation reactions. The modified lignin and raw lignin were then characterised to assess changes in their physicochemical properties via Fourier transform infrared spectroscopy (FTIR), solubility and thermogravimetric assessment, with both salinization and acetylation modification shown to enhance the solubility properties of the raw lignin of both polar and non-polar solvents. Preliminary investigations into the suitability of employing the modified lignin in hydrogel preparation were also undertaken. The preliminary hydrogels were developed using heating and freeze-thawing methods, while polyvinyl alcohol (PVA) and epichlorohydrin (ECH) were used as the matrix and the crosslinking agents, respectively. Fourier transform infrared spectroscopy (FTIR), rheological analysis, scanning electron microscopy, and thermal analysis were then used to characterize the different lignin-PVA hydrogels. The study showed that the swelling behaviour of the hydrogels was mainly influenced by the nature of the lignin (i.e., modified or raw), and the morphology of the hydrogel surfaces varied depending on the preparation methods. The study showed that the hydrogel based on silanized lignin and PVA had superior mechanical performance and swelling capacity compared to the acetylated lignin-PVA and raw lignin-PVA hydrogels.
PDF

Similar Articles

ID Score Article
12916 Morales, A; Labidi, J; Gullon, P Impact of the lignin type and source on the characteristics of physical lignin hydrogels(2022)
9466 Zhang, Y; Cheng, G Lignin-containing hydrogels: Transforming a low-value byproduct to absorbents, wound dressings and strain sensors(2023)
14528 Vasile, C; Baican, M Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials(2023)Polymers, 15, 15
7569 Morales, A; Labidi, J; Gullón, P; Astray, G Synthesis of advanced biobased green materials from renewable biopolymers(2021)
10876 Antunes, F; Mota, IF; Burgal, JD; Pintado, M; Costa, PS A review on the valorization of lignin from sugarcane by-products: From extraction to application(2022)
24043 Cannatelli, MD; Ragauskas, AJ Laccase-mediated synthesis of lignin-core hyperbranched copolymers(2017)Applied Microbiology And Biotechnology, 101, 16
6490 Mondal, S; Jatrana, A; Maan, S; Sharma, P Lignin modification and valorization in medicine, cosmetics, environmental remediation and agriculture: a review(2023)Environmental Chemistry Letters, 21, 4
27617 Sethupathy, S; Morales, GM; Gao, L; Wang, HL; Yang, B; Jiang, JX; Sun, JZ; Zhu, DC Lignin valorization: Status, challenges and opportunities(2022)
15282 Young, EL; McDonald, AG Preparation and Characterization of Biobased Lignin-Co-Polyester/Amide Thermoplastics(2021)Molecules, 26, 9
4539 Gonzalez-Gonzalez, RB; Iqbal, HMN; Bilal, M; Parra-Saldivar, R (Re)-thinking the bio-prospect of lignin biomass recycling to meet Sustainable Development Goals and circular economy aspects(2022)
Scroll