Knowledge Agora



Similar Articles

Title When Physical Chemistry Meets Circular Economy to Solve Environmental Issues: How the ReScA Project Aims at Using Waste Pyrolysis Products to Improve and Rejuvenate Bitumens
ID_Doc 28470
Authors Caputo, P; Calandra, P; Loise, V; Le Pera, A; Putz, AM; Abe, AA; Madeo, L; Teltayev, B; Luprano, ML; Alfè, M; Gargiulo, V; Ruoppolo, G; Rossi, CO
Title When Physical Chemistry Meets Circular Economy to Solve Environmental Issues: How the ReScA Project Aims at Using Waste Pyrolysis Products to Improve and Rejuvenate Bitumens
Year 2022
Published Sustainability, 14.0, 10
Abstract Urban waste management is a hard task: more than 30% of the world's total production of Municipal Solid Wastes (MSW) is not adequately handled, with landfilling remaining as a common practice. Another source of wastes is the road pavement industry: with a service life of about 10-15 years, asphalts become stiff, susceptible to cracks, and therefore no longer adapted for road paving, so they become wastes. To simultaneously solve these problems, a circular economy-based approach is proposed by the ReScA project, suggesting the use of pyrolysis to treat MSW (or its fractions as Refuse Derived Fuels, RDFs), whose residues (oil and char) can be used as added-value ingredients for the asphalt cycle. Char can be used to prepare better performing and durable asphalts, and oil can be used to regenerate exhaust asphalts, avoiding their landfilling. The proposed approach provides a different and more useful pathway in the end-of-waste (EoW) cycle of urban wastes. This proof of concept is suggested by the following two observations: (i) char is made up by carbonaceous particles highly compatible with the organic nature of bitumens, so its addition can reinforce the overall bitumen structure, increasing its mechanical properties and slowing down the molecular kinetics of its aging process; (ii) oil is rich in hydrocarbons, so it can enrich the poor fraction of the maltene phase in exhaust asphalts. These hypotheses have been proved by testing the residues derived from the pyrolysis of RDFs for the improvement of mechanical characteristics of a representative bitumen sample and its regeneration after aging. The proposed approach is suggested by the physico-chemical study of the materials involved, and aims to show how the chemical knowledge of complex systems, like bituminous materials, can help in solving environmental issues. We hope that this approach will be considered as a model method for the future.
PDF https://www.mdpi.com/2071-1050/14/10/5790/pdf?version=1652243815

Similar Articles

ID Score Article
5599 Caputo, P; Calandra, P; Loise, V; Porto, M; Le Pera, A; Abe, AA; Teltayev, B; Luprano, ML; Alfè, M; Gargiulo, V; Ruoppolo, G; Rossi, CO Physical Chemistry Supports Circular Economy: Toward a Viable Use of Products from the Pyrolysis of a Refuse-Derived Fuel and Granulated Scrap Tire Rubber as Bitumen Additives(2023)Eurasian Chemico-Technological Journal, 25, 3
15471 Abe, AA; Caputo, P; Eskandarsefat, S; Loise, V; Porto, M; Giorno, E; Venturini, L; Rossi, CO Rejuvenating Agents vs. Fluxing Agents: Their Respective Mechanisms of Action on Bitumen Subjected to Multiple Aging Cycles(2023)Applied Sciences-Basel, 13, 2
27317 Bardella, N; Facchin, M; Fabris, E; Baldan, M; Beghetto, V Waste Cooking Oil as Eco-Friendly Rejuvenator for Reclaimed Asphalt Pavement(2024)Materials, 17.0, 7
21746 Porto, M; Caputo, P; Loise, V; Abe, AA; Tarsi, G; Sangiorgi, C; Gallo, F; Rossi, CO Preliminary Study on New Alternative Binders through Re-Refined Engine Oil Bottoms (REOBs) and Industrial By-Product Additives(2021)Molecules, 26.0, 23
14769 Blanc, J; Hornych, P; Sotoodeh-Nia, Z; Williams, C; Porot, L; Pouget, S; Boysen, R; Planche, JP; Lo Presti, D; Jimenez, A; Chailleux, E Full-scale validation of bio-recycled asphalt mixtures for road pavements(2019)
15110 Neto, ODM; Silva, IM; Lucena, LCDL; Lucena, LDL; Mendonca, AMGD; de Lima, RKB Viability of recycled asphalt mixtures with soybean oil sludge fatty acid(2022)
21233 Ingrassia, LP; Lu, XH; Ferrotti, G; Conti, C; Canestrari, F Investigating the "circular propensity" of road bio-binders: Effectiveness in hot recycling of reclaimed asphalt and recyclability potential(2020)
2260 Anwar, MK; Shah, SAR; Alhazmi, H Recycling and Utilization of Polymers for Road Construction Projects: An Application of the Circular Economy Concept(2021)Polymers, 13, 8
27640 Vandewalle, D; Antunes, V; Neves, J; Freire, AC Assessment of Eco-Friendly Pavement Construction and Maintenance Using Multi-Recycled RAP Mixtures(2020)Recycling, 5.0, 3
22503 Jain, S; Chandrappa, AK Performance and Life Cycle Assessment of Recycled Mixtures Incorporating Reclaimed Asphalt and Waste Cooking Oil as Rejuvenator: Emphasis on Circular Economy(2024)Journal Of Materials In Civil Engineering, 36.0, 7
Scroll