Knowledge Agora



Similar Articles

Title Photocatalytic Recycled Mortars: Circular Economy as a Solution for Decontamination
ID_Doc 28553
Authors Barbudo, A; Lozano-Lunar, A; López-Uceda, A; Galvín, AP; Ayuso, J
Title Photocatalytic Recycled Mortars: Circular Economy as a Solution for Decontamination
Year 2020
Published Applied Sciences-Basel, 10.0, 20
Abstract The circular economy is an economic model of production and consumption that involves reusing, repairing, refurbishing, and recycling materials after their service life. The use of waste as secondary raw materials is one of the actions to establish this model. Construction and demolition waste (CDW) constitute one of the most important waste streams in Europe due to its high production rate per capita. Aggregates from these recycling operations are usually used in products with low mechanical requirements in the construction sector. In addition, the incorporation of photocatalytic materials in construction has emerged as a promising technology to develop products with special properties such as air decontamination. This research aims to study the decontaminating behavior of mortars manufactured with the maximum amount of mixed recycled sand without affecting their mechanical properties or durability. For this, two families of mortars were produced, one consisting of traditional Portland cement and the other of photocatalytic cement, each with four replacement rates of natural sand by mixed recycled sand from CDW. Mechanical and durability properties, as well as decontaminating capacity, were evaluated for these mortars. The results show adequate mechanical behavior, despite the incorporation of mixed recycled sand, and improved decontaminating capacity by means of NOx reduction capacity.
PDF https://www.mdpi.com/2076-3417/10/20/7305/pdf?version=1603105159

Similar Articles

ID Score Article
6564 Borges, PM; Schiavon, JZ; da Silva, SR; Rigo, E; Neves, A; Possan, E; Andrade, JJD Mortars with recycled aggregate of construction and demolition waste: Mechanical properties and carbon uptake(2023)
9188 Jesus, S; Pederneiras, CM; Farinha, CB; de Brito, J; Veiga, R Reduction of the Cement Content by Incorporation of Fine Recycled Aggregates from Construction and Demolition Waste in Rendering Mortars(2021)Infrastructures, 6.0, 1
8155 Kepniak, M; Lukowski, P Multicriteria Analysis of Cement Mortar with Recycled Sand(2024)Sustainability, 16.0, 5
4989 Ring, RP; Cordoba, G; Delbianco, N; Priano, C; Rahhal, V Circular Economy Approach: Recycling Toner Waste in Cement-Based Construction Materials(2024)Sustainability, 16, 11
13118 Letelier, V; Bustamante, M; Muñoz, P; Rivas, S; Ortega, JM Evaluation of mortars with combined use of fine recycled aggregates and waste crumb rubber(2021)
14086 Sargent, P; Sandanayake, M; Law, DW; Hughes, DJ; Shifa, F; Borthwick, B; Scott, P Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag(2024)
12174 Todaro, F; Petrella, A; Santomasi, G; De Gisi, S; Notarnicola, M Environmental Sustainable Cement Mortars Based on Polyethylene Terephthalate from Recycling Operations(2023)Materials, 16.0, 5
15007 Dwivedi, A; Bollam, R; Gupta, S Enhancement of engineering properties of cement mortars with masonry construction and demolition fines via carbon dioxide utilization, storage and chemical treatment(2024)
15564 Martín, DA; Costafreda, JL; Costafreda, JJL; Presa, L Improving the Performance of Mortars Made from Recycled Aggregates by the Addition of Zeolitised Cineritic Tuff(2022)Crystals, 12, 1
6276 Juan-Valdés, A; Rodríguez-Robles, D; García-González, J; Gómez, MISD; Guerra-Romero, MI; De Belie, N; Morán-del Pozo, JM Mechanical and microstructural properties of recycled concretes mixed with ceramic recycled cement and secondary recycled aggregates. A viable option for future concrete(2021)
Scroll