Knowledge Agora



Similar Articles

Title Advanced cycling ageing-driven circular economy with E-mobility-based energy sharing and lithium battery cascade utilisation in a district community
ID_Doc 28749
Authors Song, AY; Zhou, YK
Title Advanced cycling ageing-driven circular economy with E-mobility-based energy sharing and lithium battery cascade utilisation in a district community
Year 2023
Published
Abstract Electrochemical storage technologies are essential for transformation towards electrification in both building and transportation sectors. The high cost, intensified carbon density and performance ageing of electrochemical batteries prevent its sustainable applications. Many studies have explored the battery circular economy based on reusing retired EV batteries with economic and environmental competitiveness. However, few studies combine battery circular economy with E-mobility-based interactive renewable energy sharing network for sustainability, together with comprehensive considerations on dynamic battery performance and degradation. In this study, a building-vehicle energy interaction model and a battery circular economy model were developed to simulate the process of reusing retired EV batteries. Considering the inconsistency in the carbon intensity of battery operation, manufacturing and recycling phases, a lifecycle battery carbon intensity criterion is proposed to quantify the lifetime carbon of batteries, and assess the decarbonisation capability of different renewable sources, battery reusing and V2B/B2V interaction, respectively. Results show that reusing retired batteries from EVs to buildings can improve the demand coverage ratio (DCR) from 0.480 to 0.504 and the renewable penetration ratio (RPR) from 0.502 to 0.531, respectively. Furthermore, the battery carbon intensity cannot be offset unless both renewables and reused batteries are integrated. The case study demonstrates the decrease of battery carbon intensity from 1284.57 kg CO2,e/kWh to -720.79 kg CO2,e/kWh with renewable and reused batteries. Research results can provide innovative battery circular economy frameworks for electrification transformation, decarbonisation and sustainable development.
PDF

Similar Articles

ID Score Article
4873 Cusenza, MA; Guarino, F; Longo, S; Ferraro, M; Cellura, M Energy and environmental benefits of circular economy strategies: The case study of reusing used batteries from electric vehicles(2019)
4350 Richa, K; Babbitt, CW; Gaustad, G Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy(2017)Journal Of Industrial Ecology, 21, 3
22148 Picatoste, A; Justel, D; Mendoza, JMF Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines(2022)
21474 Schulz-Mönninghoff, M; Bey, N; Norregaard, PU; Niero, M Integration of energy flow modelling in life cycle assessment of electric vehicle battery repurposing: Evaluation of multi-use cases and comparison of circular business models(2021)
14445 Hu, XP; Yan, W; Zhang, XM; Feng, ZH; Wang, Y; Ying, BS; Zhang, H LRP-Based Design of Sustainable Recycling Network for Electric Vehicle Batteries(2022)Processes, 10, 2
27357 Ojha, R; Agarwal, A Implications of circular production and consumption of electric vehicle batteries on resource sustainability: A system dynamics perspective(2024)Environment Development And Sustainability, 26.0, 6
611 Ahuja, J; Dawson, L; Lee, RB A circular economy for electric vehicle batteries: driving the change(2020)Journal Of Property Planning And Environmental Law, 12, 3
4192 Thakur, J; Baskar, AG; de Almeida, CML Electric vehicle batteries for a circular economy: Second life batteries as residential stationary storage(2022)
10243 Yang, D; Wang, MX; Luo, FJ; Liu, W; Chen, LL; Li, X Evaluating the recycling potential and economic benefits of end-of-life power batteries in China based on different scenarios(2024)
20529 Watari, T; Nansai, K; Nakajima, K; McLellan, BC; Dominish, E; Giurco, D Integrating Circular Economy Strategies with Low-Carbon Scenarios: Lithium Use in Electric Vehicles(2019)Environmental Science & Technology, 53, 20
Scroll