Knowledge Agora



Similar Articles

Title Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy
ID_Doc 28847
Authors Bolognesi, S; Bernardi, G; Callegari, A; Dondi, D; Capodaglio, AG
Title Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy
Year 2021
Published Biomass Conversion And Biorefinery, 11.0, 2
Abstract In addition to the various options available for sewage sludge disposal, a possible process for sustainable resource recovery from this residue is its transformation into biochar, achieved by post-processing through pyrolysis. Biochar obtained from sewage sludge is considered one of the most interesting final products in a wastewater-based circular economy, as proven by the multitude of its possible uses tested so far in various applications. Recently, combined activated sludge (AS)-microalgae systems have been proposed to simultaneously remove both carbon and nutrients from wastewaters, as alternative to conventional technologies such as those based on denitrification and chemical phosphorus precipitation. Although this combined process could be efficient from the point of view of component removal from effluents, it generates potential issues to solid residue disposal practices, as algae normally respond poorly to traditional, mechanical drying processes. In this study, a disposal solution was investigated, consisting of pyrolysation of a mixed sludge/bioalgae matrix under different conditions: in such way, not only landfilled residuals are practically eliminated, but a material with multiple potential end uses is recovered. Process feedstock (algae, sludge and combinations thereof) and end-products (biochar and bio-oil) were characterised after pyrolysis under different conditions. Algae alone were also subject to preliminary solvent oil extraction to assess whether increased biochar production would result from such process variation (which it did, increasing biochar production by 25-33%). A comprehensive discussion on properties of end products as function of process design, possible applications in a circular economy cycle and advantages of co-pyrolysis follows.
PDF

Similar Articles

ID Score Article
2917 Khan, R; Shukla, S; Kumar, M; Zuorro, A; Pandey, A Sewage sludge derived biochar and its potential for sustainable environment in circular economy: Advantages and challenges(2023)
13381 Huang, C; Mohamed, BA; Li, LY Comparative life-cycle assessment of pyrolysis processes for producing bio-oil, biochar, and activated carbon from sewage sludge(2022)
8045 Racek, J; Sevcik, J; Chorazy, T; Kucerik, J; Hlavinek, P Biochar - Recovery Material from Pyrolysis of Sewage Sludge: A Review(2020)Waste And Biomass Valorization, 11, 7
13509 Mayilswamy, N; Nighojkar, A; Edirisinghe, M; Sundaram, S; Kandasubramanian, B Sludge-derived biochar: Physicochemical characteristics for environmental remediation(2023)Applied Physics Reviews, 10, 3
30025 Gopinath, A; Divyapriya, G; Srivastava, V; Laiju, AR; Nidheesh, P; Kumar, MS Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment(2021)
2664 Costa, JAV; Zaparoli, M; Cassuriaga, APA; Cardias, BB; Vaz, BD; de Morais, MG; Moreira, JB Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy(2023)
27990 Trabelsi, AB; Zaafouri, K; Friaa, A; Abidi, S; Naoui, S; Jamaaoui, F Municipal sewage sludge energetic conversion as a tool for environmental sustainability: production of innovative biofuels and biochar(2021)Environmental Science And Pollution Research, 28.0, 8
10564 Biney, M; Gusiatin, MZ Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions(2024)Materials, 17, 14
14879 Vilas-Boas, ACM; Tarelho, LAC; Kamali, M; Hauschild, T; Pio, DT; Jahanianfard, D; Gomes, APD; Matos, MAA Biochar from slow pyrolysis of biological sludge from wastewater treatment: characteristics and effect as soil amendment(2021)Biofuels Bioproducts & Biorefining-Biofpr, 15, 4
14060 Menezes, LNB; Silveira, EA; Mazzoni, JVS; Evaristo, RBW; Rodrigues, JS; Lamas, GC; Suarez, PAZ; Ghesti, GF Alternative valuation pathways for primary, secondary, and tertiary sewage sludge: biochar and bio-oil production for sustainable energy(2022)
Scroll