Knowledge Agora



Similar Articles

Title Designed for Molecular Recycling: A Lignin-Derived Semi-aromatic Biobased Polymer
ID_Doc 29141
Authors Molendijk, D; van Beurden, K; van Schijndel, J
Title Designed for Molecular Recycling: A Lignin-Derived Semi-aromatic Biobased Polymer
Year 2020
Published
Abstract The development of chemically recyclable biopolymers offers opportunities within the pursuit of a circular economy. Chemically recyclable biopolymers make a positive effort to solve the issue of polymer materials in the disposal phase after the use phase. In this paper, the production of biobased semi-aromatic polyesters, which can be extracted entirely from biomass such as lignin, is described and visualized. The polymer poly-S described in this paper has thermal properties similar to certain commonly used plastics, such as PET. We developed a Green Knoevenagel reaction, which can efficiently produce monomers from aromatic aldehydes and malonic acid. This reaction has been proven to be scalable and has a remarkably low calculated E-factor. These polyesters with ligno-phytochemicals as a starting point show an efficient molecular recycling with minimal losses. The polyester poly(dihydrosinapinic acid) (poly-S) is presented as an example of these semi-aromatic polyesters, and the polymerization, depolymerization, and re-polymerization are described.
PDF

Similar Articles

ID Score Article
29107 Weiland, F; Kohlstedt, M; Wittmann, C Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry(2024)
27545 Ghosal, K; Ghosh, S Biodegradable polymers from lignocellulosic biomass and synthetic plastic waste: An emerging alternative for biomedical applications(2023)
19996 Shi, CX; Quinn, EC; Diment, WT; Chen, EYX Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy(2024)Chemical Reviews, 124.0, 7
6593 Abu-Thabit, NY; Pérez-Rivero, C; Uwaezuoke, OJ; Ngwuluka, NC From waste to wealth: upcycling of plastic and lignocellulosic wastes to PHAs(2022)Journal Of Chemical Technology And Biotechnology, 97, 12
5711 Merchan, AL; Fischoeder, T; Hee, J; Lehnertz, MS; Osterthun, O; Pielsticker, S; Schleier, J; Tiso, T; Blank, LM; Klankermayer, J; Kneer, R; Quicker, P; Walther, G; Palkovits, R Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy(2022)Green Chemistry, 24, 24
7785 Silva, ALP Future-proofing plastic waste management for a circular bioeconomy(2021)
23588 Payne, J; Jones, MD The Chemical Recycling of Polyesters for a Circular Plastics Economy: Challenges and Emerging Opportunities(2021)Chemsuschem, 14, 19
4953 Wu, XY; Galkin, MV; Stern, T; Sun, ZH; Barta, K Fully lignocellulose-based PET analogues for the circular economy(2022)Nature Communications, 13, 1
7554 Tournier, V; Duquesne, S; Guillamot, F; Cramail, H; Andre, I; Taton, D; Marty, A Enzymes? Power for Plastics Degradation(2023)Chemical Reviews, 123, 9
6319 Hubble, D; Nordahl, S; Zhu, TY; Baral, N; Scown, CD; Liu, G Solvent-Assisted Poly(lactic acid) Upcycling under Mild Conditions(2023)Acs Sustainable Chemistry & Engineering, 11, 22
Scroll