Knowledge Agora



Similar Articles

Title Garbage to Nanocellulose: Quantitative Isolation and Characterization of Steam-Treated Carboxymethyl Holocellulose Nanofibrils from Municipal Solid Waste
ID_Doc 29155
Authors Patterson, GD; McManus, JD; McSpedon, D; Nazneen, S; Wood, DF; Williams, T; Hart-Cooper, WM; Orts, WJ
Title Garbage to Nanocellulose: Quantitative Isolation and Characterization of Steam-Treated Carboxymethyl Holocellulose Nanofibrils from Municipal Solid Waste
Year 2023
Published Acs Sustainable Chemistry & Engineering, 11.0, 7
Abstract Municipal solid waste (MSW) is a major source of greenhouse gas emissions unless its carbons are sequestered into highervalue products. This study focuses on isolating organic solids and cellulose-rich fibers from MSW via high-pressure steam treatment and converting the fibrous, prepulped materials from wastepaper, packaging materials, cardboard, etc., into value-added cellulose nanofibrils. Chemical-mechanical defibrillation of steam-treated municipal solid waste was optimized using heterogeneous and nonregioselective carboxymethyl etherification coupled with shearing by blender, thus transforming a heterogeneous mix of MSW into homogeneous carboxymethyl holocellulose nanofibrils without the use of conventional pretreatments of crude cellulosic feedstock. These carboxymethylated, hemicellulose-coated, cellulose nanofibrils were isolated quantitatively at >95% yield with widths 3-8 nm, thicknesses 1-3 nm, and lengths up to 1000 nm. We posit that this advancement of combining an inexhaustible, global supply of waste cellulose, large-scale steam autoclaving pretreatment, and an industrially relevant carboxymethylation process could unlock the higher potential of sustainable cellulosic nanomaterials for a circular economy.
PDF https://doi.org/10.1021/acssuschemeng.2c05236

Similar Articles

ID Score Article
8092 Basak, M; Gandy, E; Lucia, LA; Pal, L Polymer upcycling of municipal solid cellulosic waste by tandem mechanical pretreatment and maleic acid hydrolysis(2023)Cell Reports Physical Science, 4, 12
12919 Stampino, PG; Riva, L; Punta, C; Elegir, G; Bussini, D; Dotelli, G Comparative Life Cycle Assessment of Cellulose Nanofibres Production Routes from Virgin and Recycled Raw Materials(2021)Molecules, 26.0, 9
13131 Yu, YH; Guo, W; Qu, JJ; Wang, S; Wang, XG; He, Y; Yang, Y; He, Q; Liu, XD Preparation and characterization of dialdehyde cellulose nanocrystals from the waste nutshell(2023)
30045 Beluns, S; Gaidukovs, S; Platnieks, O; Gaidukova, G; Mierina, I; Grase, L; Starkova, O; Brazdausks, P; Thakur, VK From Wood and Hemp Biomass Wastes to Sustainable Nanocellulose Foams(2021)
10378 Gil, A Current insights into lignocellulose related waste valorization(2021)
18585 Rebec, KM; Turk, J; Kunaver, M Quantifying the environmental implication of cotton-Fiber-based Nanocrystalline cellulose: A life-cycle assessment(2024)
20565 Chia, MR; Phang, SW; Razali, NSM; Ahmad, I Approach towards sustainable circular economy: waste biorefinery for the production of cellulose nanocrystals(2024)Cellulose, 31, 6
9632 Dominic, CDM; Maheswary, S; Neenu, K; Sajadi, SM; Rosa, DD; Begum, PMS; Mathew, M; Ajithkumar, TG; Parameswaranpillai, J; George, TS; Resmi, VC; Ilyas, RA; Badawi, M Colocasia esculenta stems for the isolation of cellulose nanofibers: a chlorine-free method for the biomass conversion(2024)Biomass Conversion And Biorefinery, 14.0, 9
Scroll